HW10 - Due 04/16/2008
ODE - spring 2008

1) For $\epsilon>0$, approximate the solution of

$$
x^{\prime \prime}+x-\epsilon x^{3}=0
$$

with $x(0)=1, x^{\prime}(0)=0$ till the order ϵ^{2} on a fixed time interval. (The difference is a $O\left(\epsilon^{3}\right)$).
2)Take

$$
\left\{\begin{array}{l}
x^{\prime}=x-x^{2}-\epsilon x y \tag{1}\\
y^{\prime}=y-y^{2}-\epsilon x y
\end{array}\right.
$$

$1 /$ Starting with positive initial values $x(0)$ and $y(0)$, compute the expansion of the solution till the order ϵ. $2 /$ On which time interval is this approximation valid.
3) Determine the stability of of $(0,0)$ for

$$
\begin{equation*}
x^{\prime \prime}+x^{n}=0 \tag{2}
\end{equation*}
$$

where $n \in \mathbb{N}$.

4) Determine the stability of $(0,0)$ for

$$
\left\{\begin{array}{l}
x^{\prime}=2 x y+x^{3} \tag{3}\\
y^{\prime}=x^{2}-y^{5} .
\end{array}\right.
$$

Rk: For references about the perturbation theory
E. A. Coddington and N. Levinson, Theory of ordinary differential equations, McGraw-Hill, 1955
F. Verhulst, Nonlinear Differential equations and Dynamical systems.

