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Filtering the Turbulent Signals1 2

Filtering is a two-step process involving statistical prediction of the state variables through a
forward operator followed by an analysis step at the next observation time which corrects this
prediction on the basis of the statistical input of noisy observations of the system.

1Majda & Harlim, book Cambridge University Press, 2012;
2Majda, Harlim, & Gershgorin, review article, Discrete Contin. Dyn. Syst, 2010.
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Filtering

I Signal-observation system with random coefficients

Signal: Xn+1 = AnXn + Bn + ξn+1, ξn+1 ∼ N (0,Σn)

Observation: Yn+1 = HnXn+1 + ζn+1, ζn+1 ∼ N (0, Iq)

Goal: estimate Xn based on Y1, . . . ,Yn

I An,Bn,Hn (stationary) sequence of random matrices and vectors.

I An can be unstable sometimes. Hn can be on and off.
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Weather forecast

I Signal: Xn+1 = AnXn + Bn + ξn+1,

Observation: Yn+1 = HXn+1 + ζn+1.

I Weather forecast:
Signal: atmosphere and ocean “follow" a PDE.
Obs: weather station, satellite, sensors, ....

I Main challenge: high dimension, d ∼ 106 − 108.
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Kalman filter

I Use Gaussian: Xn|Y1...n ∼ N (mn,Rn)

I Forecast step: m̂n+1 = Anmn + Bn, R̂n+1 = AnRnAT
n + Σn.

I Assimilation step: apply the Kalman update rule

mn+1 = m̂n+1 + G(R̂n+1)(Yn+1 − Hnm̂n+1), Rn+1 = K(R̂n+1)

G(C) = CHT
n (Iq + HnCHT

n )−1, K(C) = C − G(C)HnC

I Complexity: O(d3).

Posterior at t = n

forecast

Prior+Obs at t = n+ 1

assimilate

Posterior at t = n+ 1

6 / 51



Random Kalman filters

Random Kalman Filters are very useful as computationally cheap filtering for forecast and
filtering models (Majda & Harlim book, 2012). SPEKF, DSS (Branicki & Majda, 2014, 2018)

Turbulent barotropic Rossby wave equation:
ωk = −β/k , Ek = k−3
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Figure: Spatial pattern for a
turbulent system of the
externally forced barotropic
Rossby wave equation with
instability through intermittent
negative damping. Note the
coherent wave train that
emerges during the unstable
regime.
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Sampling+Gaussian

I Monte Carlo: use samples to represent a distribution:

X (1), . . . ,X (K ) ∼ p,
1
K

K∑
k=1

δX (k) ≈ p.

I Ensemble {X (k)
n }K

k=1 to represent N (X n,Cn)

X n =

∑
X (k)

n

K
, Sn = [∆X (1)

n , · · · ,∆X (K )
n ], Cn =

SnST
n

K − 1
.

or through ensemble spread Cn =
SnST

n
K−1

Sn = [X (1)
n − X n, · · · ,X (K )

n − X n],
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Ensemble Kalman filter (EnKF)
I Forecast step

X̂ (k)
n+1 = AnX (k)

n + Bn + ζ
(k)
n+1, Ĉn+1 =

Ŝn+1ŜT
n+1

K − 1

I EAKF assimilation step, find Sn+1 = An+1Ŝn+1

X n+1 = X̂ n+1 + G(Ĉn+1)(Yn+1 − HnX̂ n+1), Cn+1 = K(Ĉn+1)

I Complexity: O(dK 2).

Posterior at t = n

forecast: M.C.X
(k)
n

X̂
(k)
n+1

Prior+Obs at t = n+ 1

assimilate
X

(k)
n+1

Posterior at t = n+ 1
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Application of Finite Ensemble KFs

Application:
I Successful weather forecast and oil reservoir management.
I Recently been applied to deep neural networks.
I K = 50 ensembles can forecast d = 106 dimensional systems.
I Extreme saving: 1010 = dK 2 � d3 = 1018.
I Localization & inflation for successful filtering: needed practically to avoid filter divergence

Major contributions (introduced by geoscientists):
I G. Evensen, Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo

methods to forecast error statistics. J Geophys Res Oceans, 1994.

I P. L. Houtekamer, and H. L. Mitchell. Data assimilation using an ensemble Kalman filter technique.

Mon. Weather Rev., 1998.

I Gaspari, G., and S. Cohn. Construction of correlation functions in two and three dimensions. Quart. J.

Roy. Meteor. Soc., 1999. Quart. J. Roy. Meteor. Soc.,

I J. L. Anderson. An ensemble adjustment Kalman filter for data assimilation. Mon. Weather Rev., 2001.

I C. H. Bishop, B. J. Etherton, and S. J. Majumdar. Adaptive sampling with the ensemble transform

kalman filter. Mon. Weather Rev., 2001.

I E. Kalnay. Atmospheric modeling, data assimilation, and predictability. Cambridge university press,

2003.
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New Phenomena: Catastrophic Filter Divergence

Surprising pathological discovery in EnKF
For filtering forced dissipative system with absorbing ball property (such as L-96 model), EnKF
can explode to machine infinity in finite time! (Harlim and Majda 2008; Gottwald and Majda, NPG
2013)

I Observations are typically sparse and infrequent as in oceanography

I Ensemble filtering methods can suffer from catastrophic filter divergence with sparse and
infrequent observations and small observation errors

I Catastrophic filter divergence drives the filter prediction to machine infinity although the
underlying system remains in a bounded set

Rigorous math contirbutions
Well-posedness of EnKF: D Kelly, KJ Law, and A Stuart. Well-posedness and accuracy of the
ensemble Kalman filter in discrete and continuous time. Nonlinearity, 2014.

• D Kelly, A J Majda, X Tong, Concrete Ensemble Kalman Filters with Rigorous Catastrophic
Filter Divergence, PNAS 112 (34), pp. 10589–10594, 2015.
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Rigorous nonlinear stability for finite ensemble Kalman filter (EnKF)
(Xin Tong, Majda, Kelly, Nonlinearity 2015)

Filter divergence – a potential flaw for EnKF:

I Catastrophic filter divergence: the ensemble members diverging to infinity,

I Lack of stability: the ensemble members being trapped in locations far from the true
process.

Finding practical conditions and modifications to rule out filter divergence with rigorous analysis:

I Ruling out catastrophic filter divergence by establishing an energy principle for the filter
ensemble.

I Looking for energy principles inherited by the Kalman filtering scheme.

I Looking for modification schemes of EnKF that ensures an energy principle and preserving
the original EnKF performance (Xin Tong, Majda, Kelly, Comm. Math. Sci., 2015).

I Verifying the nonlinear stability of EnKF through geometric ergodicity.

Rigorous example of catastrophic divergence:

I For filtering a nonlinear map with absorbing ball property (Kelly, Majda, Xin Tong, PNAS
2015).

Outstanding problem: Why and when is there accuracy in mean for M ≤ N?

13 / 51



Outline

Introduction: Kalman Filters and Finite Ensemble Kalman Filters for
Complex Systems

Applied Practice, New Phenomena, and Math Theory for Finite
Ensemble Kalman Filters

Preventing Catastrophic Filter Divergence using Adaptive Additive
Inflation

State Estimation and Prediction using Clustered Particle Filters

High Dimensional Challenges for Analyzing Finite Ensemble Kalman
Filters

Robustness and Accuracy of Finite Ensemble Kalman Filters in Large
Dimensions

14 / 51



Preventing catastrophic filter divergence using adaptive
additive inflation

Main reference

I Y. Lee, A.J. Majda, and D. Qi, (2016) Preventing catastrophic filter divergence using
adaptive additive inflation for baroclinic turbulence, Monthly Weather Review, 145(2),
pp. 669-682.

Catastrophic Filter Divergence and Adaptive Inflation

I D Kelly, A J Majda, X Tong, (2015) Concrete Ensemble Kalman Filters with Rigorous
Catastrophic Filter Divergence, PNAS 112 (34), pp. 10589–10594

I X. Tong, A J Majda, D Kelly, (2016) Nonlinear Stability of the Ensemble Kalman Filter
with Adaptive Covariance Inflation, Commun. Math. Sci., 14 (5), pp. 1283–1313
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Goal :

I Demonstrate catastrophic filter divergence

I Idealized baroclinic turbulence model for the ocean: two-layer quasigeostrophic equation

I Adaptive inflation to prevent catastrophic filter divergence

I Comparison between different reduced-order forecast models; importance of accurate
parameterization of small scales
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Ensemble Kalman Filter and Catastrophic Filter Divergence (review)

Finite ensemble Kalman filter: Approximate the prior mean and covariance using an ensemble

I Computationally cheap

I Low dimensional ensemble state approximation for extremely high dimensional turbulent
dynamical systems

I Sampling errors and model errors

I Covariance and localization

Catastrophic Filter Divergence:

I Observations are typically sparse and infrequent as in oceanography

I Ensemble filtering methods can suffer from catastrophic filter divergence with sparse and
infrequent observations and small observation errors

I Catastrophic filter divergence drives the filter prediction to machine infinity although the
underlying system remains in a bounded set
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Occurrence of catastrophic filter divergence
I EAKF for two-layer QG equation
I Snapshots of posterior upper layer stream function by low-latitude ocean code
I Observation points are marked with circles
I Catastrophic filter divergence is invoked after the 600-th cycle
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Covariance Inflation

Inflate covariance, Cf , to overcome problems caused by

I sampling errors due to insufficient ensemble numbers

I model errors from an imperfect model

Covariance inflation gives more weight on the observation by introducing more uncertainty in the
forecast.

Several inflation methods

Additive inflation : Cf ← Cf + λI

Multiplicative inflation : Cf ← (I + λ)Cf

I Constant inflation improves filter skill in many applications

I However, it does not prevent catastrophic filter divergence with sparse and high quality
observations
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Adaptive Covariance Inflation

A simple remedy (Tong. et al, 2016) inflates the covariance adaptively

λ = caΘ(1 + Ξ)1{Θ>M1 or Ξ>M2}

I Θ measures the innovation process

Θ :=
1
K

K∑
k=1

‖Hṽ (k) − z‖2, ṽk : prior ensemble, z : observation

I Ξ measures the cross-covariance between the observed and unobserved variables

Ξ =

∥∥∥∥∥ 1
K − 1

K∑
k=1

(
x̃ (k) − x

)(
ỹ (k) − y

)T
∥∥∥∥∥ , ṽ (k) = (x̃ (k), ỹ (k)), x̃ (k) = Hṽ (k)

x̃ : observed variable, ỹ : unobserved variable

I M1 and M2 are fixed positive thresholds to decide whether the filter is performing well or not
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Two-layer quasigeostrophic equation

∂t q1 =− v1 · ∇q1 − ∂x q1 − (k2
β + k2

d )v1 − ν∆4q1,

∂t q2 =− v2 · ∇q2 + ∂x q2 − (k2
β − k2

d )v2 − r∆ψ2 − ν∆4q2,

q1 =∆ψ1 +
k2

d

2
(ψ2 − ψ1), q2 = ∆ψ2 −

k2
d

2
(ψ2 − ψ1)

I qj : potential vorticity in the upper (j = 1) and lower (j = 2) layers

I r : linear Ekman drag coefficient at the bottom layer

I ν : hyperviscosity

I kd : deformation wavenumber

I kβ : nondimensionalized variation of the vertical projection of Coriolis frequency with
latitude

I There is net transfer of kinetic energy from small to large scales!
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Reference simulations

I Snapshots of upper layer stream functions

I 256× 256 grid points for both layers

I Zonal jets under the β-plane effect
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Forecast models
48× 48 grid points for both layers (200 times cheaper than the full resolution model)

I Ocean code : uses only a coarse grid without parameterizing the small scales

I Stochastic superparameterization : parameterizes the effect of the small scales by
modeling the small scales as randomly oriented plane waves; captures the inverse
cascade of kinetic energy

Majda and Grooms, JCP, 2014, Grooms, Lee and Majda, SIAM MMS, 2015

Time averaged kinetic energy spectra by direct numerical simulation (true), stochastic
superparameterization (blue) and ocean code (red)
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Numerical Experiments

I True signal : Full resolution; 256× 256 grid points for each layer.

I Forecast : 48× 48 grid points; 200 times cheaper than the full resolution

I Ensemble Adjustment Filter with 17 ensemble members

I Observes only the upper layer stream function

I 4× 4 uniform observation network with an error variance less than 1% of the total variance;

I Infrequent observation interval 0.008 longer than the eddy turnover time 0.006.
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Several inflation methods

We will consider the following four different inflation approaches

λ = cc + caΘ(1 + Ξ)1{Θ>M1 or Ξ>M2}

I No inflation (noI) : cc = ca = 0

I Constant Inflation (CI) : ca = 0

I Adaptive Inflation (AI) : cc = 0

I Constant+Adaptive Inflation (CAI) : cc 6= 0, ca 6= 0

We also test covariance localization using the smooth localization function by Gaspari and Cohn
and a localization radius 8 grid points.
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Catastrophic filter divergence occurrence percentage out of 100
different runs

Low Mid High
no localization Ocean SP Ocean SP Ocean SP

noI 78% 84% 98% 97% 90% 85%
CI 63% 87% 80% 76% 45% 57%
AI 3% 0% 2% 0% 5% 0%

CAI 0% 0% 0% 0% 0% 0%

Low Mid High
with localization Ocean SP Ocean SP Ocean SP

noI 40% 24% 19% 38% 44% 64%
CI 15% 11% 9% 12% 22% 8%
AI 1% 0% 0% 0% 0% 0%

CAI 0% 0% 0% 0% 0% 0%

I No inflation and constant inflation do not prevent divergene
I Localization does not prevent divergence
I Adaptive inflation depends on the forecast model; Adaptive inflation with SP prevents

divergence
I Constant inflation in addition to adaptive inflation is required to account for other errors,

such as approximation in thresholding
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Time series of the upper layer RMS errors (low latitude case)
The cycles at which inflation is triggered are marked with filled circles. Dash-line : standard
deviation of the stream function

I Constant + adaptive inflation stabilizes filters

I Filtering skill depends on the forecast model and localization

I High skill with Superparameterization
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Time series of the two statistics, Θ and Ξ

I Θ : innovation

I Ξ : cross-covariance between the observed and unobserved variables).

I Dash-line : threshold values

I For the low latitude case, Ξ plays an important role in preventing catastrophic filter
divergene
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Summary of covariance inflation

I Catastrophic filter divergence can be invoked when observations are sparse, infrequent
and of high quality

I Checked for baroclinic turbulence, nontrivial test model

I Constant inflation and localization do not prevent catastrophic filter divergence

I Adaptive inflation by Tong et al. can prevent catastrophic filter divergence; cross-correlation
between observed and unobserved variables play important roles in addition to innovations

I Robust forecast models can affect the occurrence of catastrophic filter divergence in
addition to accurate results

I High skill with Superparameterization
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State estimation and prediction using clustered particle
filters

Main reference

I Y. Lee and A.J. Majda, (2016) State estimation and prediction using clustered particle
filters, PNAS, 113(51), 14609-14614.

Multiscale data assimilation

I Y. Lee and A.J. Majda, (2015) Multiscale methods for data assimilation in turbulent
systems, SIAM Multiscale Modeling and Simulation, 13(2), 691–173.
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Data assimilation and non-Gaussian statistics (review)

I Non-Gaussian features in Geophysical fluids

I Ensemble based methods : use Gaussian assumption

I Particle filters

p(x) =
K∑
k

wkδ(x − xk )

where wk ≥ 0 and
∑

k wk = 1.

Limitations of particle filters
I Not applicable to high-dimensional systems (Bengtsson T, Bickel P, Li B, 2008)

I Particle collapse : A small fraction of particles have the most weights

I Number of particles increases exponentially with the dimension of the system

I No localization : observation affects all state variables even if they are not uncorrelated
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Clustered Particle Filters (CPF), Lee and Majda, PNAS

A new class of particle filters to address the issues of ensemble-based filters and standard
particle filters

Key features

I Capture non-Gaussian statistics

I Use a relatively few particles

I Implements coarse-grained localization through the clustering of state variables

I Particle adjustment

I Simple but robust even with sparse and high-quality observations

I No adjustable parameter
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Schematics of several particle filters

wk

x1 x2 x3 x4 x5 x6

Standard Particle Filter

x1 x2 x3 x4 x5 x6

Localized Particle Filter

w5,kw4,kw3,kw2,kw1,k w6,k

w1,k w2,k

x1 x2 x3 x4 x5 x6

Clustered Particle Filter

Figure: Schematics of particle weight, wk , for the k -th particle.

I Total dimension is 6 and two observations at x2 and x5

I Standard particle filter uses the same particle weight at different locations
I Localized particle filter uses different weights at different locations
I In CPF, sparse observation network determines the clustering of state variables; two

clusters for CPF
I Weights are the same in the same cluster

34 / 51



Particle Adjustment

I The mean of p(x) =
∑K

k wkδ(x − xk ), wk ≤ 0,
∑

k wk = 1 is a convex combination of
xk ,wk xk

I If the observation cannot be represented by a convex combination of the prior particles, the
posterior mean is never close to the observation (∵ particle filtering updates only the
particle weights)

Adjust the prior particles to match the Kalman posterior mean and covariance if the prior
particles cannot represent the observation

yj 6∈ {
K∑
k

qk [xf
Cj ,k

]|,∀qk ≥ 0 such that
∑

k

qk = 1}

yj : j-th observation component, xf
Cj

: prior particles in the j-th cluster Cj
Note several adjustment or transformation methods of ensemble-based methods can be applied
to the particle adjustment. In this study, we use the method of EAKF by Anderson.
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Hard Threshold Clustered Particle Filter Algorithm - one step
assimilation

Given :
1) Nobs observations {y1, y2, ..., yNobs}
2) prior K particles {xf

Cj ,k , k = 1, 2, ...,K} and weight vectors {ωf
l,k , k = 1, 2, ...,K} for

each cluster Cl , l = 1, 2, ..,Nobs

For yj from j = 1 to Nobs

If yj 6∈ {
∑K

k qk H[xf
Cj ,k ]|, ∀qk ≥ 0 such that

∑
k qk = 1}

Do particle adjustment
Else Use particle filtering

Update {ωf
j,k} using standard PF update

If Keff =
1∑

k (ωa
l,k )2 <

K
2

Do resampling
Add additional noise to the resampled particles

xCl ,Resample(k) ← xCl ,Resample(k) + ε (1)

where ε is IID Gaussian noise with zero mean and variance rnoise

End If
End If

End For
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Multiscale Clustered Particle Filtering

I Multiscale data assimilation (particle filter, ensemble filter)
Lee and Majda, Multiscale Methods for Data Assimilation in Turbulent Systems, SIAM
MMS, 2015

I Probability distribution : conditional Gaussian mixture
p(u) =

∑K
k wkδ(u − uk )N (u′(uk ),R′(u))

I Particle filtering for the large scales and Kalman update for the small scales

I Particle adjustment: Accounts for representative error, the error due to the contribution of
unresolved scales
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MMT model : wave turbulence

i∂tψ = |∂x |1/2ψ − |ψ|2ψ + iF + iDψ (2)

in a periodic domain of length L with large-scale forcing set to F = 0.0163 sin(4πx/L) and
dissipation D for both the large and small scales.

I shallow energy spectrum k−5/6

I inverse cascade of energy from small to large scales

I non-Gaussian extreme event statistics caused by intermittent instability and breaking of
solitions

I small scales carry more than two-thirds of the total variance

Majda, McLaughlin, Tabak, J. Nonlinear Sci., 1997
Cai, Majda, McLaughlin, Tabak, Physica D: Nonlinear Phenomena, 2001
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Reference and stochastic superparameterization (SP) results

Reference uses 8192 grid points while stochastic SP uses only 128 grid points
(Majda and Grooms, JCP, 2014, Grooms and Majda, Commun. Math. Sci,
2014)
Left : Time-averaged kinetic energy by reference (solid line), stochastic
superparameterization (dash line), unparameterized model (dots)

Middle and Right : Time series of |ψ| of the reference (middle) and stochastic
superparameterization (right)
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Filtering results of the MMT model
Time series of the large-scale RMS errors; 64 observations
Dash line : climatological error 0.20, Dash-dot line : effective observation error 0.34
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I Superior performance of CPF
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Summary of clustered particle filters

We proposed the clustered particle filter

I Captures non-Gaussian statistics

I Efficient - requires only a small number of particles

I Robust under sparse and high-quality observations

I Clustering of state variables

I Particle adjustment to prevent particle collapse

I Applied to Lorenz 96 and wave turbulence (multiscale data assimilation)

I Accurate filter performance

Future work:

I Dense and vector observations

I Two- and three-dimensional spaces
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Review: Kalman filter

I Use Gaussian: Xn|Y1...n ∼ N (mn,Rn)

I Forecast step: m̂n+1 = Anmn + Bn, R̂n+1 = AnRnAT
n + Σn.

I Assimilation step: apply the Kalman update rule

mn+1 = m̂n+1 + G(R̂n+1)(Yn+1 − Hnm̂n+1), Rn+1 = K(R̂n+1)

G(C) = CHT
n (Iq + HnCHT

n )−1, K(C) = C − G(C)HnC

I Complexity: O(d3).

Posterior at t = n

forecast

Prior+Obs at t = n+ 1

assimilate

Posterior at t = n+ 1
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Review: Gaussian Sampling and Ensemble Kalman filter (EnKF)
Sampling + Gaussian

I Monte Carlo: use samples to represent a distribution:

X (1)
, . . . ,X (K ) ∼ p,

1
K

K∑
k=1

δ
X(k) ≈ p.

I Ensemble {X (k)
n }K

k=1 to representN (X n,Cn)

X n =

∑
X (k)

n

K
, Sn = [∆X (1)

n , · · · ,∆X (K )
n ], Cn =

SnST
n

K − 1
.

Finite EnKF
I Forecast step

X̂ (k)
n+1 = AnX (k)

n + Bn + ζ
(k)
n+1, Ĉn+1 =

Ŝn+1ŜT
n+1

K − 1
I EAKF assimilation step, find Sn+1 = An+1Ŝn+1

X n+1 = X̂ n+1 + G(Ĉn+1)(Yn+1 − HnX̂ n+1), Cn+1 = K(Ĉn+1)I Complexity: O(dK 2).

Posterior at t = n

forecast: M.C.X
(k)
n

X̂
(k)
n+1

Prior+Obs at t = n+ 1

assimilate
X

(k)
n+1

Posterior at t = n+ 1
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Challenges for analyzing finite ensemble Kalman filters

Ensemble size K to represent uncertainty of dimension d :

I Rank deficiency: Cn =
∑K

k=1(X (k)
n −X n)(X (k)

n −X n)T

K−1

Has rank(Cn)≤ K − 1, see as
[

Cn 0
0 0

]
} K-1
} d-K+1

I Instability of the dynamics: Ĉn+1 = AnCnAT
n + Σn

What if span(Cn) does not cover expanding directions?

I Covariance decay by random sampling: Cn+1 = K(Ĉn+1)

K : concave, monotone: ECn+1 = EK(Ĉn+1) � K(EĈn+1)

I Spurious correlation in high dimension.
Suppose X (k)

n ∼ N (0, Id ) i.i.d, by Bai-Yin’s law

‖Cn − Id‖ ≈
√

d/K with large probability
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Robustness and Accuracy of Finite Ensemble Kalman Filters
in Large Dimensions

Main references

I A. J. Majda and X. T. Tong, (2018). Performance of Ensemble Kalman filters in large
dimensions. CPAM, 71(5), 892-937.

I A. J. Majda and X. T. Tong, (2017). Rigorous accuracy and robustness analysis for
two-scale reduced random Kalman filters in high dimensions. accepted by CMS.
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Main result

Theorem (Majda, Tong 16)

Suppose the system has a low effective filter dimension p, there is a variant of EnKF with a
constant C, such that the EnKF reaches its proclaimed performance if K > Cp.

And the convergence rate applies for any finite ensemble with K > Cp at the rate dK 2 which is
the expected operational rate.

Next, we explain

I What variant of EnKF?

I How to define a low effective dimension?

I What does proclaimed performance mean?
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EnKF variant for enhanced fidelity

Techniques to enhance fidelity

I Rank deficiency: additive inflation ρId

Cρn = ρId +

∑K
k=1(X (k)

n − X n)(X (k)
n − X n)T

K − 1
=

[
Cn + ρIK−1 0

0 ρId−K +1

]

The under represented direction: assume error strength is ρ.

I Instability of the dynamics. Increase noise strength

X̂ k
n+1 = An+1X (k)

n + ξ
(k)
n+1, ξ

(k)
n+1 ∼ Σ+

n
Σn → Σ+

n = [ρAnAT
n + Σn − ρ/rId ],

Σ+
n indicates the system instability.

I Covariance decay by random sampling.
Multiplicative inflation: Ĉn+1 = r Ĉn+1

I Spurious correlation in high dimension.
Projecting to p principal directions of K(Ĉn+1)

The leftover direction: assume error strength is ρ
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Main theorem

Theorem (Majda, Tong 16)

Suppose the signal observation system is uniformly observable with m steps, and has a effective
dimension p. Then for any c, there are C,F ,DF ,Mn, so that if K > Cp

E‖en‖Cρn
≤ r−

n
6 EF (C0)

√
‖e0‖2

C0
+ 2m + Mn

√
d

With the constants bounded by

F (C) ≤ DF exp(DF log3 ‖C‖), lim sup
n→∞

Mn ≤
1 + c

1− r−
m
6
.

Cor1: exponential stability: the difference in mean converges to zero.
Cor2: ε scale noises lead to ε scale error for EnKF.
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Thank you
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