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ABSTRACT

Two layer equatorial primitive equations for the free troposphere in the pres-
ence of a thin atmospheric boundary layer and thermal dissipation are developed
here. An asymptotic theory for the resonant nonlinear interaction of long equa-
torial baroclinic and barotropic Rossby waves is derived in the presence of such
dissipation. In this model, a self-consistent asymptotic derivation establishes that
boundary layer flows are generated by meridional pressure gradients in the lower
troposphere and give rise to degenerate equatorial Ekman friction. That is to
say, the asymptotic model has the property that the dissipation matrix has one
eigenvalue which is nearly zero: therefore the dynamics rapidly dissipates flows
with pressure at the base of the troposphere and creates barotropic/baroclinic
spin up/ spin down. The simplified asymptotic equations for the amplitudes
of the dissipative equatorial barotropic and baroclinic waves are studied by lin-
ear theory and integrated numerically. The results indicate that although the
dissipation slightly weakens the tropics to midlatitude connection, strong local-
ized wave packets are nonetheless able to exchange energy between barotropic
and baroclinic waves on intraseasonal time scales in the presence of baroclinic
mean shear. Interesting dissipation balanced wave-mean flow states are discov-
ered through numerical simulations. In general, the boundary layer dissipation
is very efficient for flows in which the barotropic and baroclinic components are
of the same sign at the base of the free troposphere whereas the boundary layer
dissipation is less efficient for flows whose barotropic and baroclinic components
are of opposite sign at the base of the free troposphere.

Subject headings: equatorial Rossby waves; atmospheric boundary layer;
amplitude equations

1. Introduction

The meridional exchange of energy between the midlatitudes and equatorial regions is
a topic of considerable significance for understanding global teleconnection patterns from
the tropics to the midlatitudes. Several authors have used linearized two layer primitive
equations on a [-plane in order to describe the interaction of long equatorial baroclinic
Rossby waves and long equatorial barotropic Rossby waves. The linear theory of the
primitive equations in the zonal long wave limit yield two sets of waves. The first are
weakly dispersive, zonally long, equatorially trapped baroclinic Rossby waves. For a dry
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gravity wave speed of 50 ms™' the fastest of these travel at —16.6ms™" (see Majda (2003)
for a comprehensive discussion). The primitive equations also have linear solutions which
correspond to equatorial barotropic Rossby waves with a significant midlatitude projection.
In the long wave limit these waves, too, are dispersionless and travel westward at a speed
proportional to their wavelength squared.

Equatorial baroclinic Rossby waves provide a description of planetary scale phenomena
in the tropics. Similarly, equatorial barotropic Rossby waves describe phenomena linked
with potentially significant connections between the tropics and midlatitudes. Several
authors (see Webster (1971; 1981; 1982), Kasahara and Silva Dias (1986), Hoskins and Jin
(1991), Wang and Xie (1996), Lim and Chang (1981; 1986) and Hoskins and Yang (2000))
have studied these waves in the context of midlatitude connections to the tropics. These
studies have found that nearly dispersionless long equatorial baroclinic Rossby waves can
exchange significant energy with barotropic waves at midlatitudes in the presence of vertical
and meridional mean shears.

With the benefit of this intuition Majda and Biello (2003) and Biello and Majda (2003)
recently have derived a long wave theory describing the nonlinear interaction of equatorial
baroclinic waves and barotropic waves in the presence of zonal mean barotropic shears and
zonal mean vertical shears. The partial differential equations of the theory describe waves
longer than 5000 km in the zonal direction and 1500 km meridionally. The theory admits
waves of amplitude on the order of 5ms~' near the equator interacting with zonal mean
velocities and vertical shears of about the same strength. In these studies it was shown
that the presence of vertical, baroclinic shear allows for significant energy exchange between
the tropically confined baroclinic waves and barotropic waves with significant midlatitude
projection on timescales on the order of fifteen days. While detailed comparison with
observations of the present theories (this work and that of Majda and Biello (2003) and
Biello and Majda (2003) ) will be presented elsewhere, equatorially trapped Rossby waves
with a significant barotropic component are often observed propagating westward in the
eastern Pacific (Kiladis and Wheeler (1995) and Wheeler, Kiladis and Webster (2000)).

Important additional effects not considered by Majda and Biello (2003) and Biello and
Majda (2003) are dissipative mechanisms arising from radiative cooling and atmospheric
boundary layer drag. In this paper we shall systematically incorporate these mechanisms in
the asymptotic theory of Majda and Biello (2003) and Biello and Majda (2003) following
the resonant long wave theory that they developed for equatorial baroclinic an barotropic
waves: hereafter we refer to these papers collectively as MB. The models we develop here
show that, due to boundary layer dissipation, various anomalies on time scales of ten days
can strengthen upper troposphere flow while simultaneously weakening flow at the base of
the troposphere. This feature is part of the observational record of anomalies such as the
intraseasonal oscillation (see Yanai et al. (2000)).

A two layer tropospheric model with weak Newtonian cooling is coupled to a
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convectively well mixed, thin barotropic boundary layer (see Neelin (1988), Wang and

Li (1993) and Moskowitz and Bretherton (2000) for the origin of similar boundary layer
models). Following MB, resonantly interacting baroclinic and barotropic tropospheric long
waves are studied. Here the mean tropical climatology is represented by fairly weak (order
5ms~! barotropic and baroclinic shears which are appropriate for the tropics. Though the
boundary layer dissipation times are relatively small for the (twelve day) intraseasonal time
scales of interest here, the boundary layer is thin in comparison to the troposphere. This
combination allows for a longer relaxation time in the troposphere due to boundary layer
dissipation and leads in a systematic fashion to equatorial Ekman friction which is described
by a degenerate linear operator. Since radiative cooling is weak, it is straightforward to
incorporate in the higher order terms of the asymptotic theory of MB.

In section 2 we describe the basic two layer model with a well mixed barotropic
boundary layer. In 2.1 the long wave asymptotics is described while in 2.2 the linear theory
of low Froude number flows is described in detail. Section 2.3 assembles these pieces into
a systematic long wave theory of equatorial baroclinic and barotropic Rossby waves in the
presence of boundary layer dissipation. In section 3 amplitude equations are constructed
for resonantly interacting baroclinic and barotropic wavetrains. The new linear dissipation
terms are evaluated in section 3.1 and the normal form rescaling from MB is provided in
3.2. The linear theory of mean flows and waves is described in section 4. Section 5 provides
a series of numerical examples which illustrate the nonlinear behavior of the amplitude
equations with dissipation included. Solitary waves solutions are used in 5.1 to demonstrate
the breaking of vertical symmetry by dissipation. Sections 5.2 and 5.3 revisit the examples
of midlatitude to tropics wave energy exchange that were studied by MB. Section 5.4
considers the long time evolution to a nonlinear balanced state. We conclude in section 6
with a brief discussion of our results.

2. Atmospheric boundary layer and radiative damping effects on
long equatorial baroclinic and barotropic waves

We shall systematically incorporate boundary layer drag and thermal dissipation in the
description of resonantly interacting equatorial baroclinic and barotropic long waves. To
this end we consider a standard two layer -plane model describing the free troposphere,
whose vertical extent is 0 < z < Hy. In addition, at the base of the free troposphere there
is assumed to be a well mixed, barotropic boundary layer with extent —zp < z < 0. The
velocity profile as a function of height is sketched in figure 1.

The equatorial baroclinic and barotropic waves in the free troposphere are described by
much the same equations previously considered by Majda and Biello (2003), and Biello and
Majda (2003). The nonlinear equations for the interaction of barotropic, @y, and baroclinic,
U1, modes in the free troposphere can be derived in standard fashion (Neelin and Zeng
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(2000), Majda and Shefter (2001) ) from a two vertical mode Galerkin truncation of the
Boussinesq equations on the §-plane with rigid lid boundary conditions with the form

¥ =0o(z,y) + vl(x,y)\/icos (—)
Hy

(1)

=

p =po(,y) + pr(x,y) V2 cos (H—T)

where p; are the pressures associated with each mode and Hy = 16.75 km is the troposphere
thickness. Using the gravity wave speed, ¢ = @ determined by the Brunt-Vaisala
frequency, N = 1072s~!, we consider the non-dimensionalized equations with the unit of
meridional and zonal length measured by the equatorial Rossby radius, Lr = (c¢/ ﬂ)l/ 2
and time given by T = (cﬁ)_l/ 2, Velocity and pressure are nondimensionalized by c
and ¢?, respectively. The natural non-dimensional vertical length scale in is measured by
H = Hr/m = 5km while the units for nondimensional vertical velocity, w, are H/Tg.
Following MB, the standard values associated with dry wave propagation of a baroclinic
heating mode with

¢=50ms™!, Tg = 8.3hrs, Ly = 1500 km (2)

will be used below to demonstrate various qualitative effects of the nonlinear coupling.
Hereafter all functions and variables are nondimensional.

The equations

D7, . Lo l o -
tho +yly +V- (h®%) = —Vpy— §(V + Uo) U (3)
V-9 = —Ag (V- Up) (4)
D% it 4 (5 V)i = —Vpr— S(V- )i (5)
Dr YUy U1 Vg = p1 5 Vo)1
D . 1
D_Zz)fl +V- 7 = —dgp —V2Ap (V-v5) — §(V - Uo)p1 (6)
DB% . s, 1 -
Ayl = =V (po+v2p1) = dTip = 57 (V- 7). (7)

describe a barotropic, ¥y, and baroclinic, ¥, velocity field where ¥; = (u;, v;), ﬁj = (—vj, u;),
p; are functions of the horizontal variable, (x,y) alone and all the vector derivatives involve
only horizontal differentiation. Here and elsewhere in the paper the transport operator

% = % + 7y - V, represents advection by the barotropic mode. The quantity vp = (up,vp)
represents the velocity in the boundary layer and the advective derivative in the boundary

layer refers to the horizontal boundary layer velocity, %]i = % + g - V. A Newtonian
cooling term, dy p; appears in equation (6) and will be further discussed below.

The boundary layer has thickness zp and the ratio

i
Ap=E
5=, (8)
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is the fundamental nondimensional quantity appearing in equations (3) - (6) and we
shall exploit the fact that it is a small parameter. The profile of horizontal velocity in
dimensional variables as a function of height in the troposphere is shown in figure 1 (a). It
is clear that the barotropic mode corresponds to a vertically homogeneous horizontal mean
wind in the free troposphere whereas the baroclinic mode yields a net vertical shear. For
further discussion of the equations describing the dynamics of the equatorial baroclinic and
barotropic waves the reader is referred to Wang and Xie (1996) and MB.

In this model, the atmospheric boundary layer at the base of the troposphere is
assumed to be convectively well mixed and therefore barotropic. Similar boundary layer
models have been used previously in the context of tropical baroclinic waves (Neelin (1988),
Wang and Li (1993) and Moskowitz and Bretherton (2000)). The boundary layer has
nondimensionalized vertical extent —7Apg < z < 0, horizontal velocity vz and it is assumed
that all of the frictional dissipation occurs there through the term d 7 in equation (7).
Equation (7) and the terms which couple the boundary layer velocity to the free troposphere
in equations (3)-(6) are derived by assuming that the barotropic boundary layer is coupled
to the troposphere through the continuity of vertical velocity and pressure across the fixed
interface, z = 0. The boundary layer pressure on the right hand side of equation (7),

P = po + V/2p1, is simply the sum of the baroclinic and barotropic pressure at the base of
the free troposphere according to equation (1). A vertical velocity which decreases linearly
with height is thereby imparted on the barotropic flow in the free troposphere above the
boundary layer which, in turn, is the source of the divergence of 7y in equation (4). In fact,
the non-dimensional vertical velocity in the troposphere, w, associated with a boundary
layer velocity, ¥, and baroclinic velocity, ¥ is

w=—Ag(mr—2)V-(05) —V2V-(d)sin(z), 0<z<m 9)

where the first term in (9) is the barotropic vertical velocity which vanishes at the top of
the troposphere, z = 7w, and the second, the baroclinic vertical velocity, vanishes at the top
and bottom of the troposphere. The vertical velocity as a function of height due to each of
these components is shown in figure 1 (b). Note that as in other boundary layer models for
engineering flows, the horizontal velocity is permitted to jump discontinuously across the
boundary layer through the boundary conditions which match only pressure and vertical
velocity.

The interface at z = 0 has non-zero vertical velocity and should therefore sustain
interfacial waves. Strictly speaking the boundary condition across the interface between
the free troposphere and the barotropic boundary layer should be continuity of pressure
and continuity of normal velocity across z = n(z,y,t) where 1 describes this free interface.
In addition the evolution of 7 is described by a kinematic constraint relating its advective
derivative to the vertical velocity at the interface. A Boussinesq model describing a free
troposphere interacting with a barotropic boundary layer can be written down with these
assumptions and, in the absence of dissipation, the non-linear interactions in this model
would automatically conserve energy. However, the vertical Galerkin truncation which
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separates such a model into a barotropic and first baroclinic requires a basis which conforms
to the dynamic boundary at z = 7. Such an approach has been carried out systematically
by Ripa (1995) in a somewhat simpler context.

Since the boundary layer is both barotropic and thin in comparison to the free
troposphere, Ag < 1, both the vertical velocity at the interface and the deviation of
the interface from its equilibrium, n are small. Therefore the boundary condition can
effectively be applied at z = 0 with the deviations leading to higher order nonlinearities.
The quadratic nonlinear terms on the right hand side of equations (3) - (7) are added in a
somewhat ad hoc fashion so that nonlinear advection in the absence of dissipation conserves
energy. Therefore they model the effect of the variation of boundary layer thickness which
is otherwise not included when assuming a stationary interface. Since the terms contribute
only higher order effects in the asymptotic expansions developed here their specific form is
not relevant for any of the results in this paper.

Recall that the ratio of boundary layer thickness to the height of free the troposphere
is Ap = zp/Hy and we will exploit the fact that the boundary layer is thin in comparison
to the troposphere. In practice, the height of the well mixed tropical boundary layer
varies from 0.5 to 1.0 km (Wang and Li (1993), Moskowitz and Bretherton (2000)). Thus,
the reasonable values of boundary layer thickness and troposphere height zg = 1.0 km,
Hpr =16.75 km yield

Ap = 0.06 (10)

which we shall use as a representative value for purposes of illustration throughout the rest
of this paper. A boundary layer dissipation timescale can be calculated using a turbulent
drag coefficient of Cp = 1073 (Majda and Shefter (2001)) , typical turbulent velocities of
2 —5ms ! and the boundary layer thickness. This yields a dissipation time of order one day
in the boundary layer so that the nondimensional drag coefficient is

A~

d~0.3. (11)

with T ~ 8.3 hrs. The model constructed in the following sections explicitly illustrates
that the combination of a thin boundary layer with a one day relaxation time sets a longer
boundary induced decay time in the free troposphere in a highly anisotropic fashion.

The effect of thermal dissipation is included through a Newtonian cooling term in the
baroclinic pressure equation (5). Thermal damping is observed to occur on roughly 18 - 20

day timescales yielding X
dg ~ 0.02 (12)

as a representative value used below.

As remarked the equations (3-7) conserve energy in the absence of boundary layer drag
and thermal dissipation, otherwise the energy decays. The energy relation can be readily



derived and yields

E:§/ [|U0‘2+|U1‘2+p%+AB|UB|2:| dx dy
D

(13)
=—AB/ g2 da:dy—dg/p% dx dy.
D D

The integrals are taken over the two dimensional 3-plane which is periodic in z (zonally)
and bounded in y (meridionally).

2.1. Zonal long wave scaling

Our theory is concerned with tropospheric flows which vary slowly in the zonal direction
and evolve on longer timescales than the equatorial time, 7. We shall consider flows whose
meridional variations occur on Rossby deformation lengthscales, Lg, while zonal variations
occur on a longer length L and evolve on timescales, T', which are long compared to 1.
Since Ap is small, the barotropic velocity field is primarily solenoidal with a potentially
significant projection at midlatitudes. Furthermore, it is well known that baroclinic flows in
the equatorial wave guide have primarily zonal propagation with a limited extent of a few
thousand kilometers in the north-south direction but a much larger east-west scale varying
over the entire 40000 km circumference of the globe (Wang and Xie, (1996), MB). These
considerations suggest that we consider flows whose meridional velocity is small compared
to the zonal velocity. As in MB (also see §9.3 of Majda (2003)) define the small parameter,

0 as follows,

L T

— =06, = =0, [v] = 0Jul, (14)
for § < 1 and seek solutions of the equations in (3) and (5) for the free troposphere of the

form
p; = p; (0z,y, 01)
u; = u; (dz,y, 0t) (15)
vj = 6v; (0z,y, 01)

for 7 =0, 1.

Boundary layer flow is driven by pressure gradients in the overlying troposphere. In
the long wave approximation for the free troposphere the solutions have meridional pressure
gradients which dominate zonal gradients. In the boundary layer linear theory, the pressure
forcing is balanced against the Coriolis effect and boundary layer dissipation. Therefore,
for the flow in the boundary layer we also assume meridional variations over a long length
scale but we do not require meridional velocities to be O(J) smaller than zonal velocities.
Therefore we seek solutions of the boundary layer velocity of the form

Up = Up (&Ea Y, 6t) : (16)
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It is the divergence of the boundary layer dissipation which couples the boundary flow
to the free troposphere baroclinic and barotropic equations. According to the scaling
hypothesis in equation (16), the meridional and zonal components of the boundary layer
flow are of the same order, yet the long wave scaling means that zonal variations are O(J)
smaller than meridional variations. Therefore the divergence of the boundary layer velocity
is dominated by the meridional derivative of the meridional boundary layer velocity; the
zonal derivative of the zonal component is O(9) smaller. It will become clear that, in this
approximation, only the meridional component of the boundary layer velocity plays a role
in the dissipation of the waves in the free troposphere. These assumptions differ from the
ones in Moskowitz and Bretherton (2000) where linearized boundary layer equations are
simplified through long wave asymptotics.

With these approximations, the long-wave scaled equations as in MB emerge. With
the ansatz in equations (15) and (16) the barotropic and baroclinic equations for the free
troposphere from equations (3) and (5) become

Du . A
th() — YV -+ V . (ulvl) -+ (p())m = 2—; [(UB)y =+ (5 (/U’B)m} Ug
Dv . A
yuo + (po),, + &2 DTtO +V- (Ulvl)] = TB [(UB)y +9 (UB);C} Vg (17)
A
(o), + (v0), = == | (vs), + (us),
and
D Ap | 7
T T Vuo = o+ (), = 57 [(08), + 0 (us), | w
Duv . AT 1
Yyuy + (p1)y + 52 |:DTtl + vy - V’UO:| = TB _(UB)y + 0 (U/B)w_ U1 (18)
Dp L _Aprg 1 (P do
DtV 0= [0n), +ows)] (G- V) - e

Finally, the long wave scaled barotropic boundary layer equations are

a ~
5[%+(U2B)x+(p0+\/§p1) :| +(UBUB)y:y'UB—dUB
m (19)

a A
) [% + (UB UB)$:| + (U%’)y + (pO + \/§p1>y = —yupg — dvg.

Together, these equations are the Long Wave Scaled Equations for Equatorial Baroclinic
and Barotropic waves (LWSEBB, see MB) in the presence of thermal and boundary layer
dissipation. To avoid cumbersome notation, the arguments of the variables in equations

(15) and (16) are written implicitly in the LSWEBB and are still denoted by z,y, t.



- 10 —

2.2. Leading order asymptotics in a low Froude number expansion

The tropospheric zonal velocities in equations (17) and (18) are measured in units of
the propagation speed of a dry baroclinic mode, 50ms™! from equation (2). Typical mean
winds and vertical shears at the equator are on the order of 5 — 10ms *. As in MB this
motivates a small amplitude solution of the long wave equations (17)-(19) of order €, where
€, the Froude number, is the ratio of typical wind velocities to the dry wave propagation
velocity, c. Combining equations (15), (16) with this low Froude number assumption we
construct asymptotic solutions of equations (3),(5) and (7) with the form

p; = (6:5 y, 0t, det) + € p] (5x y, Ot, det) +
u; = (533 y, 6, Oet) + € u (5:5 y, 0t, det) +
v; = dev (63: y, 6t, et) + S¢€” U 2 (6z,y, 6t, 6et)
Up = evB (5$ y, 0t, Set) + € UB ) (82, y, 6t, 6et) +

(20)

where j = 0,1 as before. A wind velocity of 5ms~! yields the reasonable value of € = 0.1;
we shall fix e = 0.1 in the examples for purposes of illustration as in MB. In the subsequent
section a distinguished limit balancing dispersion and nonlinearity will be sought requiring
62 = € but for the time being we shall not make such a restriction in order to maintain
generality. As in MB, the relation §? = ¢ yields the value § = 0.31 in equations (15), (16) as
well as for (17), (18) and (19); thus meridional variations are of order 1500 km while zonal
variations are of order 'Lz ~ 5000 km.

Substituting the scalings of equation (20) into equations (17), (18), (19) the leading
order in € and ¢ yields the linear theory of barotropic and baroclinic waves in addition
to the boundary layer theory. Since we are not interested in waves which damp strongly
within a wave travel time we make the mild assumption that

ﬁzoa) and %:0(1). (21)

The typical values of Ap and dy given in equations (10) and (11) fall well within these
restrictions. The resultant linear theory describes long equatorial barotropic waves

(u0), — yvo + (o), =0
yuo + (po), =0 (22)
(o), + (v0), =0

and long equatorial baroclinic waves

(u1), — yo1 + (p1),
yui + (p1)

(p1), + (V- 71)

0
=0 (23)
0
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each of which are in meridional geostrophic balance and decoupled from the boundary layer.
The equations in (22) and (23) are simply the linear barotropic long-wave equations and
the linear equatorial long-wave equation, respectively, discussed by Heckley and Gill (1984),
Majda (2003) and MB.

The linear barotropic long-wave equation (22) has the well known dispersion relation,
wBT = —l%, with corresponding dispersionless Rossby wave train solutions,

. 1
Y = =B’ (z — cppt)sin (ly) — B (x — crt) cos (ly), cpr = 5 (24)

for any wavenumber [. The velocity components are (ug,vo) = (—%y,%,;) and the
superscripts “S” and “A” denote zonal flows which are symmetric or antisymmetric about
the equator, respectively.

Similarly, the linear equatorial long wave equation, (23), has dispersionless equatorial
Rossby wavetrain solutions (Heckley and Gill (1984), Majda (2003))

Am (T—cmt) Dim+1(V2y)
p - 2 (Dm—1(\/§y) + (;17“))

— Am(z—cm D1 \/5
v )= | it (b, (e - Pat) (25)
OA(T—cmt
- (2m2—|—1) (81; )Dm(\/iy)
for any integer m > 0 where D,,(n) are the parabolic cylinder functions and
1
Cm = — . (26)
2m +1

The baroclinic waves have symmetric zonal flows about the equator for m odd and
antisymmetric zonal flows for m even and decay exponentially away from the equator.

From equations (19) and (20), the leading order boundary layer equations are the
equatorial Ekman equations,

va—cZuBzo

A 27
yup + dvp = — (po + \/§p1> . (27)
y

These are simply inhomogeneous linear algebraic equations which can be readily solved in
terms of the tropospheric pressure or zonal velocity

y (po + \/§p1)y v (uo+ V2u,)
o) (e
o _cZ(po + \/§p1)y _ ciy (uo + \/iul)
o (#+y2)  (e+e)

up = —
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The second equalities in (28) arise from the meridional geostrophic balances in equations
(22) and (23) and, using equation (1), indicate that the boundary layer velocity is
proportional to the total zonal velocity at the base of the free troposphere. In fact, the
zonal component of the boundary layer velocity is in the same direction as the total zonal
component of the velocity at the base of the troposphere. On the other hand, the meridional
component of the boundary layer flow points away from the equator (divergent) for westerly
winds and toward the equator (convergent) for easterlies. In particular, the meridional
boundary layer velocity is in the opposite direction of the meridional component of the
pressure gradient (as is the zonal component).

The variation with y of the coefficients in equation (28) is also interesting. Due to the
long zonal scale and long time approximation and the consequent meridional geostrophic
balance in the troposphere, both the meridional and zonal component of the boundary layer
velocity vanish along the equator, y = 0. Furthermore, meridional flows are stronger than
zonal flows at the equator yet as |y| — oo, up — (ug + v/2u1) and the meridional boundary
layer flow tends to zero; the roles of the two components are reversed. Clearly, since
both coefficients in equation (28) are functions of the parameter y/d the non-dimensional
parameter, cZ, sets the scale for this transition in the relative strengths in the velocities.

2.3. LWSEBB equations in the presence of a thin boundary layer

Under the assumption of weak dissipation, equation (21), long wavelength linear
barotropic and baroclinic waves are nearly dispersionless and do not dissipate. This suggests
that there is a distinguished limit where the inclusion of a thin barotropic boundary layer
with order one dissipation effectively provides linear dissipation of momentum to the long
waves in the troposphere on a long timescale, 7 = det (refer to the equations 20). In
particular we assume that the leading order barotropic divergence term is O (€?) so that
%3 ~ ¢; the same will be true of the Newtonian cooling. In order to single out small terms
in the equatorial baroclinic/barotropic equations, we define new order one parameters

A= % and dp = %. (29)

which describe the ratio of the boundary layer thickness to troposphere height and the
small thermal dissipation coefficient.

In order to have weak dispersive effects compete with nonlinearity in these long wave
solutions (as in Boyd (1980), Patoine and Warn (1981), Majda and Biello (2003)) the zonal
long-wave parameter, J, in equations (17), (18) and (19) and the amplitude, ¢, in equation
(20) will be balanced and satisfy 6> = e. MB discussed how the reasonable value of € = .1
allows zonal velocities of order 5ms~! and, with 62 = ¢, zonal variation on scales of order
Lp 6~ ~ 5000 km; thus the relation 8% = € is physically realistic. With this choice of small
parameters, one unit of the long timescale, 7, equals 11 days.
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Using the physically relevant values from MB discussed earlier, e = 0.1, § = /e = 0.31,
and the boundary layer thickness and thermal dissipation from equations (10) and (11),
Ap ~ 0.06, dg =~ 0.02 the rescaled parameters take on the values

A~?2 and dy=~0.67, (30)
both of which are order one so the assumptions in equation (29) are reasonable.

We have assembled all the pieces to construct solutions of the equatorial
barotropic/baroclinic equations in the free troposphere in the presence of the dissi-
pation from the boundary layer and thermal dissipation. Using the scalings described in
equations (20) and (29), the multiple timescales ¢ (which is the ¢ rescaled original time), the
slower timescale 7 = det needed in section 3 while including only the leading order effects
from the boundary layer, the long wave equatorial barotropic equations become

—5; Yo+ V- (m) + (po), + et = O(¢")
D
yuo + (o), + 67 {Tvto +V- (111171)] + evg, = O(5€%) (31)

(uo), + (v0), = —Ae(vp), + O(?)

and the long wave equatorial baroclinic equations become

D
DTutl —yv + v1 - Vug + (p1)m + €Uy = 0(63)
, [Dvy 3
Yyu + (pl)y + 6 ﬁ + vp - VUO + €V1,r = 0(56 ) (32)
D . = A
Dfp;l +V -0+ epry = —€ (dep1 +V24 (UB)y> +0(e).

Here the low Froude number scaling in equation (20) has been used to evaluate the order of
the neglected terms. Note that a power of § has been canceled in the first and last equations
in (31) and (32). Also, as in equations (17), (18) and (19), the convention that the zonal
coordinate, x, and time, ¢, are the original variables rescaled by ¢ and that the fields have
order one variation on these scales is employed. The meridional boundary layer velocity,
vp, is given as a function of the baroclinic and barotropic velocities by equation (28), thus
closing equations (31) and (32).

Since the barotropic velocity is solenoidal at leading order, it is convenient to use a
stream function and a potential through the Helmholtz decomposition

Ty = V*(6x, y, 8t, Set) + Vo (dz, y, 0t, Set). (33)

Without canceling §’s the nearly incompressible constraint on the velocity field from
equation (3) is B
V -0y = —6eA(vp), (34)
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and substituting equation (33) into (34) yields
82 Puz + byy = —A e (vB), (35)

again the zonal variable, x refers to the long zonal scale. Notice that zonal potential flows
are order ¢ smaller than meridional flows and, furthermore, ¢, is order de smaller than vp
so to lowest order the meridional velocity due to potential flow is given by

¢y = —Adevp. (36)

This equality expresses the fact vertically integrated meridional mass flux in the boundary
layer is balanced by an opposite flux in the troposphere. We can now recast equations
(31) using the stream function. Recognize that, since the velocity from the potential is
already order de smaller than the other terms, we need only consider its lowest order, linear
contribution. The lowest order contribution of the potential terms enters at order ¢ and
arises from the linear term in the velocity equation associated with the §-effect. Therefore
taking the curl of the first two equations in (31) yields the barotropic vorticity equation

T eV (@), ) +
_ (37
52 {Dgzﬁ + V. ((’171 Ul)z)} + €’¢yy,7 = Ae (y UB)y + 0(63, 5262)

The boundary layer zonal velocity is given explicitly in terms of the pressure or troposphere
velocity through equation (28). The equations (32) and (37) constitute the Dissipative
Long Wave Scaled Equatorial Baroclinic Barotropic equations (DLWSEBB).

3. Amplitude equations for DLWSEBB

Amplitude equations for the undamped LWSEBB have been derived and discussed in
detail by Majda and Biello (2003) and Biello and Majda (2003). We shall not reproduce
the derivations here but instead outline the procedure and focus on the derivation of the
new terms in the amplitude equations.

Using the distinguished limit of dispersion balanced nonlinearity, we set 62 = ¢ for
the remainder of this discussion. The asymptotic series of equation (20) is substituted
into the dissipative long wave scaled equatorial baroclinic/ barotropic equations, (32) and
(37), and the resultant equations are solved at each order in €. At lowest order, €', the
linear barotropic long-wave equations (22) and the linear equatorial long-wave equations
(23) emerge. As already discussed, their solutions are the dispersionless barotropic Rossby
wavetrains of equation (24) and equatorial baroclinic Rossby wavetrains of equation (25).

Only resonantly interacting long waves will yield nontrivial solvability conditions for
the amplitude equations. For a fixed m, the dispersionless packets in (24) and (25) are
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resonant for a barotropic mode with meridional wavelength, L, with [ = %—fLE provided
that

L, _ 27 (38)
E 2m +1

for m = 1,2,.... With the gravity wave speed, ¢ = 50ms™! and Ly = 1500 km from
(2) the dimensional meridional wavelengths of the resonant barotropic Rossby waves are
approximately

L,=36Lg=>5440km for m=1

39
L, =228 L =4200km for m = 2. (39)

The wave packets are referred to a frame moving at the resonant wave speed, —16.7 ms™!

and —10 ms~! for m = 1,2, respectively. Fixing the resonant values of | we proceed to
second order.

As in MB, the ultimate goal here is to derive simplified dynamics for the interaction
of barotropic and equatorially trapped baroclinic waves in spherical geometry. Below we
make several approximations in deriving the asymptotic models. First, spherical geometry
is replaced by an equatorial S-plane geometry and, as in MB, the flows on the S-plane are
assumed to be confined to a finite channel domain defined by no penetration boundary
conditions at y = £L,, i.e.

Vly=sr. = 0. (40)

Wang and Xie (1996) have established the important fact that linear theory for coupled
equatorial baroclinic/barotropic Rossby waves on the g-plane, in the long wave regime
with baroclinic and barotropic mean shears is an excellent approximation to similar waves
in spherical geometry with boundaries at y = +L, where L, < 4Lg. The values of L, in
equation (39) are compatible with this. Also, Longuet-Higgins (1968) has shown that the
[B-plane approximation is an excellent one for equatorially trapped baroclinic waves on the
sphere.

Note that as in MB, the symmetric barotropic Rossby mode with amplitude B® in
equation (24) exactly satisfies the boundary condition in equation (40). The equatorial
Rossby wave trains in equation (25) do not exactly satisfy these boundary conditions at
y = L, but do so withing exponentially small errors since the dominant contribution from
the eigenfunctions involve parabolic cylinder functions, D,,(y), with the decay factor, e v/,
for y = L, from equations (39), e ¥'/2 2 0.0015, 0.019 for m = 1, 2, respectively. Thus,
while strictly speaking one should use the more cumbersome exact finite channel equatorial
baroclinic eigenfunctions to exactly satisfy equation (40), for simplicity in discussion we
use instead the simplified formulas in equation (25) for the equatorial Rossby waves. For
additional reasons this is an especially good approximation because, according to equation
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(20) the meridional flows are already scaled to be weaker in magnitude. As a check, note
that the free tropospheric flows in the figures in MB and presented below in the present
paper all visually satisfy equation (40) at y = £L, even though the approximation in
equation (25) is utilized. Also, as in the formulas computed in (3.10) and (3.12) from MB,
the integrals in the asymptotic interaction coefficients between barotropic and baroclinic
waves including the boundary layer are extended from the domain, |y| < L., to the entire
integration range, —oo < y < oo. Thus, the interaction coefficients in the asymptotic
model are calculated approximately in this fashion. As regards MB, this last approximation
is a negligible one for the basic interaction coefficients since the ambiguous error terms
from (3.10) and (3.12) of MB all involve squares of parabolic cylinder functions integrated
against oscillating periodic functions for |y| > L, and, as shown above, the Gaussians are
already small in amplitude at |y| = L.. Here similar approximations are also used for
the new boundary layer contributions. In addition, the leading order Ekman flows, ¢,,

in equation (36) are picked self-consistently from equation (28) and do not satisfy the
boundary condition in equation (40) at y = +L,, but only in the limit, |y| — oco. Finally,
the antisymmetric Rossby wave contribution, B in equation (24) has been carried along
below to discuss the symmetries of the interaction through Ekman friction even though it
solves stress-free boundary conditions rather than no-normal flow at y = +L, from equation

(40).

At second order in € (using equation (20) and §? = ¢) the equation governing the
stream function from (37) and the baroclinic velocity and pressure from (32) are the linear
long wave equations in (22) and (23) with inhomogeneities arising from the first order
terms. These inhomogeneous terms are simply functions of the first order wave packets
and, since they travel at the baroclinic long wave speed, are resonant with the linear
operator. The resonance gives rise to secular growth of the second order fields and must be
removed by projection of the nonlinear terms onto the adjoint eigenfunctions of the linear
problem. Since the linear equations are self-adjoint, the adjoint eigenfunctions are given
by the meridional structure of the baroclinic wave packet in equation (25) and each of
the meridional structures of the barotropic wave packet from equation (24). As discussed
in detail in MB (and generalized in Biello and Majda (2003)), multiplying the second
order equations by each of these adjoint eigenfunctions and integrating in y results in the
amplitude equations

TAAT - DAA:c:c:c + O./(A Bs)z = ABC
rgBS — DBy .+ aAA, = Ag (41)

TTT
rpBt — DpB2 = Aa
for each value of m = 1,2,.... The amplitudes A(z — ¢,ut,7), B%(x — ¢put,7) and
BA(x — ¢pt, 7) with 7 = et are defined in equations (25) and (24) for packets of barotropic
and equatorial baroclinic Rossby waves under the conditions in equation (38). The
coefficients A arise from the dissipation terms on the right hand sides of equations (32) and
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(37) and are given by
Apc = —/ D (da pgl) +v2A (v?) ) dy
—00 Y

L
—A/ lcos(ly) y vg) dy (42)

—L

Ag

L
AA:A/ I'sin (ly) yvg) dy

—L

where p is the meridional structure of the pressure component of the baroclinic waves, the
first entry in equation (25),

= P ) X

and the meridional flow in the boundary layer is given explicitly in terms of the zonal flow
at the base of the troposphere by

- CZZ/ (U0+\/§U1)
B — N
(7 )

. (44)

MB derive amplitude equations which are those of equation (41) without any dissipation
terms, A. The specific forms of the coefficients on the left hand side of equation (41) can be
found there. We remark that the form of the asymptotic expansion allows for zonal mean
barotropic and baroclinic shears which have the same meridional structure as the waves;
simply the zonal means of A, BS and BA. Since waves of different meridional structure (i.e.
different m) are unable to resonantly interact, one need only consider equations (41) for a
fixed m in isolation from the other modes.

Biello and Majda (2003) consider the more general case when the background shear
has arbitrary meridional structure, in particular a meridional structure opposite to that of
the underlying waves. To fix ideas, let us consider a baroclinic mean zonal shear composed
of the meridional eigenfunctions of the m = 1 and m = 2 baroclinic waves and a zonal
mean barotropic shear with meridional structure consisting of | = v/3 and [ = /5 sines
and cosines. In such instances the equations derived by MB allow for the exchange of wave
energy to | = 1/3 antisymmetric barotropic waves from symmetric barotropic waves and
baroclinic waves through coupling with the [ = v/5 barotropic and m = 2 baroclinic mean
shears. Similarly | = /5 antisymmetric barotropic waves resonantly exchange wave energy
by coupling through the ! = v/3 zonal mean barotropic and m = 1 mean baroclinic shears.
The amplitude equations derived by MB conserve the zonal mean flows and thus waves of
different meridional structure (i.e. m = 1,2,...) can be considered in isolation from the rest.
However the presence of dissipation allows the evolution - in particular the decay - of the
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zonal mean shears. A complete description of the waves in this case would require both
the m = 1 and m = 2 equations derived in MB with the addition of the dissipation terms,
A. Tt is a straightforward exercise to add the dissipation terms to the equations considered
by Biello and Majda (2003) and allow the amplitudes of the mean shears to evolve under
dissipation. This level of generality is not exploited here but it is interesting for potential
applications.

3.1. Evaluation of the dissipation coefficients

In this section we show that the component of the dissipation vector A arising from
the boundary layer has the structure of a nearly degenerate symmetric matrix acting on the
vector of wave amplitudes

Agc | 2 s A
A - AS - —A "3’12 "3/22 0 BS . (45)
Aa Y3 0 33 BA

We point out that physically the degeneracy means that there exists a combination of
barotropic and baroclinic velocities such that

vp =0 = up+ V2u; =0 (46)

is satisfied exactly in the DLWSEBB. However, the amplitude equations (41) project the
baroclinic and barotropic flows onto meridional eigenfunctions such that equation (46)
cannot be satisfied exactly for all y. A full description of the boundary layer dissipation
would require the complete bases to describe uy and u; in which case the dissipation matrix
in equation (45) would be infinite and exactly degenerate (with an infinite null space). The
matrix in equation (45) is simply a truncation of the infinite matrix and as such retains
only a near degeneracy.

The component of the dissipation arising from the thermal dissipation only acts on the
baroclinic waves and has the form

ApesT™e = —dpp A. (47)

It is straightforward to calculate the thermal dissipation coefficient from equation (42)

o0
= [ ay (48)
— 00
In order to calculate the coefficients of the boundary layer dissipation matrix it is convenient

to define the kernel arising from the Ekman pumping

A,

s (y/d)?
Plyd)=d = G/ (49)
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After integrating by parts, using the geostrophic balance from equation (23), p, = —y1,
and the definition of the baroclinic meridional eigenfunction from equation (25)

~ 1 Dm—|—1(\/§y)
=7 (Dm—1(\/§y) - W) (50)

it is straightforward to show that the dissipation matrix, I' = (%;), from equation (45) is
symmetric and does not couple the two barotropic components. The explicit values of the
coefficients are

Ay =2 /Oo F(y;d)a? dy

9 =VE [ Flsd) Loosiy) i dy

S = — /2 / d) Isin(ly) @ dy (51)
oy = /  Plyd)(tcos(ly))* dy

0= [ Pz

We remark that, strictly speaking, the domain of integration in the barotropic dissipation
terms should be taken over —L < y < L. However, since the component of meridional
boundary layer velocity due to the baroclinic flow in the troposphere decays rapidly away
from the origin, we extend these integrals to infinity for simplicity and at the expense of a
small error in the dissipation terms, as done elsewhere in MB.

Further simplification of the matrix I’ can be achieved by exploiting the symmetry of
the zonal component of the baroclinic eigenfunction. In particular it is straightforward to
show that

m =1 = 4 symmetric = 413 =0 (52)
m = 2 = 4 antisymmetric = 5 = 0.

3.2. Normal form rescaling

The amplitude equations for the dissipative equatorial baroclinic barotropic waves
(41) can be recast in a normal form. Following MB, we define the rescaled amplitudes

= /T4, BS = = sp\/TeB%, BA = spy/TeB*, the rescaled time 7 = 7/7y and zonal
coordlnate Z = x/x9. Upon removing the hats the dissipative rescaled equatorial baroclinic



barotropic equations (DREBB) are

A — DA+ (A Bs)x == A(71114 + ’)’1235 + 713BA) — dgypA
BS — BS .+ AA; = — A(1124 + 722 B®) (53)

IITIT

Bf — BA = — A(’}/lgA + ’}/33BA)

XL
The values of the rescaling coefficients are presented in the appendix to MB (2003)

(\/TA,\/TB, To, T, SB) = (1.63,2.33,0.60,1.96,1) form =1

54
(1.72,2.65,0.55,4.22, —1) for m = 2. (54)

Using the boundary layer dissipation rate d = 0.67 the values for the rescaled dissipation
coefficients become

— ’3/97'0 _ 098 _ ’3/117'0 _ 029
=007 211 =TT 105
_ $BY1270 _ 0.29 _ 5BY1370 _ 0 (55)
= s 0 Te= s | L
— "3/227'0 . 0.40 — ’3/337'() . 0.50
=TT 079 W=7 Lo

where the first values correspond to m = 1 and the second values to m = 2.

The energy exchange properties of equations (53) have been studied by MB for the
case when A = dy = 0. We remark that the energy is simply the integral of the amplitudes

added in quadrature

E:%/mhwmf+wﬂﬂm (56)

while each of the wave components of energy are
By [ (4 da, (57)
where the wave components are defined implicitly by
A:A+A’:/Adx+A' (58)

and similarly for BS and B4. The effects of the dissipation terms will be elucidated in the
coming sections when linear and non-linear solutions are studied. Note that, from equation
(52) when m = 1, antisymmetric barotropic waves decouple from the other modes and
simply disperse and decay. Conversely when m = 2 the dissipation does not couple the
symmetric barotropic waves to the (antisymmetric) baroclinic waves. Their coupling occurs
through the original, energy conservative terms on the right hand side. Dissipative coupling
between the antisymmetric baroclinic waves and the antisymmetric barotropic waves does,
however, occur when m = 2.
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4. Linear Theory of the DREBB

For the purposes of discussion, we fix the values of the boundary thickness ratio A=2
and, when considering thermal dissipation its rate shall be dy = 0.67 as discussed above
equation (30).

4.1. Dissipation of zonal mean flows

Taking the zonal mean of the equations (53) we find the first novel feature of this
model, that zonal mean flows evolve linearly through a nearly degenerate dissipation matrix.
For m = 1 with no thermal dissipation the mean flow equations are

A, 0.6 0.6 0 A
B |=—-106 08 0|-| B%|. (59)
B2 0 0 1 B4

This matrix has eigenvalues
A1 =-0.09, X =-131, A3=-1.0 (60)

and recognizing that the rescaled time unit corresponds to 22 days we find decay times,
T, = |\ of
T, = 244 days, T» =17 days, T3 = 22 days. (61)

The third eigenvalue clearly corresponds to a pure antisymmetric barotropic mode. The
first two eigenvalues correspond to mixed symmetric barotropic and m = 1, symmetric
baroclinic mean flows. The very long timescale associated with 77 is a reflection of the
nearly degenerate nature of the matrix. Therefore mean flows will relatively quickly decay
to the eigenfunction associated with the smallest eigenvalue, A;, which we call the slow or
slaved state. Since the timescale associated with the smallest eigenvector is well beyond
the time at which other physical effects are expected to intervene, the boundary layer
dissipation matrix behaves as though it were degenerate in the asymptotic equations.
The mixed baroclinic/barotropic eigenfunction corresponding to T3 is the most rapidly
dissipated mean state and we will refer to it as the fast eigenfunction or adjustment flow.

The meridional structure of the mean zonal flow can be reconstructed using the
eigenvectors for the slow and fast modes

B® ~ —0.854, B~ 1.184, (62)

respectively. The expression for the total mean zonal flow as a function of the rescaled
amplitudes is

u:% cos M6_92/2 3_
Do) = S0 [Ty (63)
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where | = /3 and the positive and negative signs correspond to the bottom and the top of
the free troposphere, respectively. The meridional structure of zonal flow at the top and
bottom of the troposphere and the meridional and zonal component of the boundary layer
flow are plotted in figures 2 and 3. Using a barotropic shear which attains a velocity of 3.7
ms ! at the equator, figure 2 displays the slaved flow and figure 3 displays the adjustment
flow.

Figure 2 (b) shows the zonal flow at the base of the troposphere for the slaved flow.
Clearly in the slaved state there is only a weak zonal flow (about —1ms™') at the base of
the free troposphere near the equator. The meridional velocity in the boundary layer, figure
2 (c), never rises above 1 ms!. In contrast, the zonal flow for the adjustment flow at the
base of the troposphere near the equator is about 9 ms! in figure 3 (b). The meridional
boundary layer flow is also much larger - about 4 ms™ in figure 3 (c) - and of the opposite
sign of its counterpart in figure 2. In both of these cases, the zonal flow in the boundary
layer (figures 2 and 3 (d)) near the equator is large if the corresponding meridional flow
is large. Similarly the zonal flow at the top of the troposphere near the equator (figures 2
and 3 (a) ) is large if its counterpart at the base of the troposphere is small. These results
clearly reflect the physical principle that boundary layer dissipation tends to minimize the
meridional (and thereby zonal) velocity in the boundary layer near the equator. Therefore,
boundary layer dissipation tends to drive zonal mean flows to a minimum velocity at the
base of the troposphere.

For m = 2 the zonal mean flows evolve according to

A, 21 0 222 A
B |=-] 0 158 0 |-|B°]. (64)
BA 222 0 202 BA

where, in this case, one unit of the long timescale corresponds to 46 days. The eigenvalues
of the dissipation matrix are

A =0.16, Xy =-4.28, A;=—158 (65)

so that the first eigenvalue now corresponds to a growing mode. The timescales associated
with these eigenvalues are

T, = 288 days, T, =11 days, T3 =29 days. (66)

In this case the third eigenvalue represents a decaying symmetric barotropic mean
wind. The first eigenvalue yields a small growth of mixed antisymmetric barotropic and
antisymmetric, m = 2 baroclinic mean flow. The fact that one mode grows does not pose
significant problems for the theory as again, it happens on timescales much larger than
those of physical interest. In this case, we would expect smaller scale barotropic and
baroclinic modes to be spun up prior to the 77 timescale since, as stated before equation
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(46) a full description of the boundary layer dissipation would require a complete basis for
the antisymmetric baroclinic and barotropic modes. Including only a few more baroclinic
and barotropic modes actually destroys the positive eigenvalue, but since these modes do
not resonate with the antisymmetric, —10ms™! baroclinic wave and only interact linearly.
Finally, the second mixed mode decays on timescales of 11 days and so we can expect

a balanced mean flow state corresponding to the first eigenvector to prevail over long
timescales.

Again the meridional structure of the mean zonal flow is reconstructed using the
eigenvectors for the slow and fast modes

B4~ —1.024, B*~0.984, (67)

respectively. When m = 2 the total mean zonal flow is antisymmetric about the equator
and is given by

u = BA(T) sin A(T) e V2 |y — y_3
N l (ly)j:2\/§\/77 [y 3} (68)

where [ = /5 and the positive and negative signs correspond to the bottom and the
top of the troposphere, respectively. The slaved zonal flow is plotted in figure 4 and the
adjustment flow in figure 5. For the slaved flow, it is again clear that zonal flow is small
at the bottom of the troposphere, especially near the equator. The meridional flow in the
boundary layer is absolutely negligible in this case. Conversely, the adjustment flow has
exceedingly strong zonal flow at the base of the troposphere and correspondingly strong
flows in the boundary layer.

We conclude that the effect of the near degeneracy of the boundary layer dissipation
matrix is to quickly drive mean zonal flows to a slow eigenfunction, the slaved mean flow
state. The slaved state has minimal flow in the boundary layer and therefore a very weak
wind at the base of the troposphere. Since the barotropic and baroclinic components of the
velocity essentially cancel at the base of the troposphere, they are additive at the top of the
troposphere. Therefore the slaved state has very strong winds at the top of the troposphere.

4.2. Breaking the degeneracy; the effect of thermal dissipation on mean flows

Increasing the thermal dissipation has the effect of breaking the near degeneracy due to
pure boundary layer dissipation. Using m = 1 we calculate the eigenvalues and eigenvectors
of the dissipation matrix as a function of dj. Figure 6 (a) shows the dissipation times
for increasing dy among a range of reasonable values. The timescale of the slow mode
rapidly decreases from the 244 day time associated with purely boundary layer dissipation.
Nonetheless, for all reasonable values, Jg < 0.67 the slow timescale remains above 50 days,
well separated from the fast timescale. The latter, in turn, is only moderately affected by
thermal damping, remaining always on the order of 15 days.



— 924 —

In figure 6 (b) is plotted the ratio of the zonal velocities at the bottom of the
troposphere at the equator for the eigenfunctions of the dissipation matrix as a function
of dj. Clearly, even when dp = 0 the wind speed of the slow mode (the negative branch)
does not vanish there; as we have discussed, the zonal velocity of the slow mode becomes
low over a broad meridional range. Increasing thermal damping increases the barotropic
contribution to the slow mode while decreasing its contribution to the fast mode.

4.3. Linear theory of dissipated waves for slaved mean flows

Since mean flows are not constant in time, the linear theory of barotropic and baroclinic
waves in the presence of mean flows is not well defined. However, it is useful as a very
relevant approximation to consider the linear theory of waves in the presence of slaved mean
flows assuming that the mean velocities remain constant. We describe the linear theory for
four cases of m = 1 waves interacting with mean shears which were chosen to reside in the
slaved state. The first two cases have no thermal dissipation while the latter two cases use
dy = 0.67; only the two examples with the most extreme behavior are shown in figures 7
and 8. The mean shears were chosen to have moderate values that can be expected from
the climate record so the barotropic mean flow takes on both positive and negative values.
Since the amplitude equations are valid only for the longest wavelengths in the domain we
only consider linear theory for the first six zonal wavenumbers.

In case 1 the equatorial barotropic mean shear is 2.5 ms~! at the bottom of the
troposphere so that the baroclinic mean shear is -3.6 ms ! there. The dissipation time
as a function of integer zonal wavenumber is plotted in figure 7 (a). It is clear that the
dissipation times for both the slow and fast modes remain well separated and do not
change significantly over this range of wavenumbers. MB studied the effect of barotropic
and baroclinic shears on the wave speeds and found that the mean shears could produce a
significant change in wave speeds, on the order of 5 ms™. Plotted in figure 7 (b) are the
wave speeds for case 1. The presence of boundary layer dissipation does not qualitatively
alter the conclusions of the undamped theory. However, note that the mean flows impart a
splitting of the two sets of waves, one of which is damped more rapidly than the other. In
this case, the upper wave branch (waves moving westward more slowly) corresponds to the
set of slow modes. We describe the linear theory of case 2 without a figure. In case 2 there
is also no thermal dissipation and mean flows have the opposite sign of case 1; a barotropic
mean shear of -2.5 ms~! and a baroclinic mean shear of 3.6 ms™!. In this case, though the
fast mode damps at about 17 days the slow mode timescale drops from 244 days to less
than 100 days over the first six wavenumbers. Again the wave speeds are not significantly
altered, however the slowly damped waves travel westward with greater velocity.

Cases 3 and 4 have dy = 0.67. In case 3 (not plotted) the mean zonal barotropic shear
is 2.5 ms~! making the baroclinic wind -3 ms~!. The damping time for the fast and slow
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modes do not change significantly with wavenumber, the former being about 15 days and
the latter about 60 days. The wave speeds have the same qualitative behavior as in the
non-dissipated case and again the weakly damped waves travel westward more slowly than
the strongly damped waves. Case 4 uses a mean barotropic shear of -2.5 ms™! so that
the baroclinic shear is 3 ms™!. Figure 8 (a) shows that the slow modes do not remain
well separated from the fast modes, both having a timescale of approximately 25 days
at wavenumber six. Clearly the designations “slow” and “fast” are no longer valid. The
wave speeds are qualitatively the same as the earlier cases with the slow branch traveling

westward with greater velocity.

In conclusion the linear theory of dissipated baroclinic barotropic waves exhibits
a myriad of different behaviors. The general features of the wave speeds appear to be
unaffected by dissipation. When there is no thermal dissipation one set of waves is
rapidly damped while the other remains slowly damped for all of the asymptotically valid
wavenumbers. However, for significant amounts of thermal dissipation the two branches do
not remain well separated, both rapidly decaying.

5. Numerical simulations of the amplitude equations in the
presence of dissipation

We integrate equations (53) over a zonal domain which corresponds to the circumference
of the Earth. The numerical integrations reported here were performed using a de-aliased
pseudo-spectral method with at least 64 modes of spatial resolution combined with a fourth
order Runge-Kutta time discretization. For the simulations describing solitary waves, we
used 256 modes of resolution. Conservation of energy to within 1079 is satisfied for all
numerical solutions and as in MB, we ensured that less than 4% of the energy resided in
modes higher than £ = 8 for all times in order to be consistent with the long wavelength
asymptotics. In order to reconstruct the velocity fields the standard value of ¢ = 50 ms™!
and the choice € = 0.1 is used.

With regard to the plots, the waves in all of the flow vector figures are shown in
the carrier wave frame of reference, —16.6 ms~!. Furthermore, the velocity vectors in the
troposphere are plotted for the same example at all times using the same scale; both of the
solitary waves use the same scales. The vectors in the boundary layer are stretched in order
to highlight the flow features, but also use the same scales for a given example.

In this section we consider four examples of dissipative equatorial baroclinic and
barotropic waves in the case m = 1. This corresponds to a symmetric baroclinic wave and
mean flow interacting with barotropic waves. The antisymmetric barotropic waves evolve
under linear dispersion and dissipation in this situation and, since they have no effect
on the other waves or mean flows, we always consider zero initial data for these waves.
Therefore the setting is symmetric barotropic and baroclinic mean shears in the presence
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of symmetric barotropic and equatorial baroclinic waves. First we consider the effect of
boundary layer dissipation on solitary waves which arise in the ideal setting using , A = 2
and dy = 0. We then revisit two examples considered by MB in the ideal context and
consider the evolution of the same initial conditions in the presence of both boundary layer
and thermal dissipation; A = 2 and dy = 0.67. The second example was chosen in order
to study the exchange of energy from equatorial barotropic Rossby waves with significant
midlatitude projection to equatorial baroclinic Rossby waves which are concentrated around
the tropics. The third example considers the transfer of energy from the tropical equatorial
baroclinic waves to the barotropic waves with significant midlatitude projection. By
comparing the ideal results in MB with those in the presence of boundary layer drag and
thermal dissipation, we can see the effects of dissipation on the rate and amount of energy
exchange between the tropical and extra-tropical waves that were discussed in MB. In the
final example, we again only use boundary layer dissipation and begin with a mean flow
which is already in a slaved state. Using random initial wave data we consider the long
time evolution of the waves and we shall find that they evolve to a slaved state of their own
with extremely interesting patterns.

5.1. Effect of boundary layer dissipation on Solitary waves

Biello and Majda (2003) construct solitary wave solutions of the undamped amplitude
equations (53) of the form

—ct _
A(x — ct) =a sech? (%) +A
(69)

—ct 3
B®(x — ct) = — b sech? (:1: /\C ) + B.

Such exact solutions are archetypes of more general localized structures and provide an
idealized setting where the effects mean shear and non-linear advection could be studied.
We now add the effect of boundary layer dissipation on such localized waves. In the setting
without dissipation, to every solitary wave there corresponds another through interchanging
A — —A. This is a reflection of the vertical symmetry of the undamped equations which
we expect boundary layer dissipation to break. The non-zero constants, A, B give solitary
waves in specific baroclinic and barotropic mean shears.

We numerically integrate two solitary wave solutions for 20 days using A = 2 and
dp = 0 and compare the results to the initial waves. The waves have wave amplitudes which
are comparable to the mean wind and shears. The initial condition of the first wave is
shown in figure 9; a 11400 km wave traveling at —15ms~" in a barotropic mean wind of
3ms~! and a baroclinic mean shear of —5ms™!. This soliton in a shear flow has a cyclonic
equatorial baroclinic component and an anti-cyclonic barotropic component. The relation
of A and B? is reasonably near that for the slow slaved state in equation (62) so we expect
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boundary layer dissipation to be inefficient here. The winds are much stronger in the top of
the troposphere, 8ms™" (figure 9 (c)), compared with —2ms™" (figure 9 (b)) at the base.
The boundary layer flow converges at the equator except at the soliton where it is divergent
and westerly. Notice that the solitary wave itself has the effect of locally reversing the mean
flow in the troposphere. After 20 days the wave is shown in figure 10. Clearly very little
dissipation has taken place, the wave having simply traveled eastward in the moving frame.

The initial condition for second solitary wave in figure 11 reverses the sign of the
baroclinic flow component of the previous wave so that both components are anti-cyclones.
Here there is a strong projection on the fast component in equation (62) so we expect the
dissipation to be very efficient. In this instance there is an 8 ms~! mean wind at the base
of the troposphere and a correspondingly large boundary layer flow which diverges from
the equator everywhere except in the solitary wave. Again the wind at the center of the
solitary wave is in the opposite direction of the mean wind and attains a maximum easterly
wind speed of 7Tms™! at the base of the troposphere. As a result of the vertical baroclinic
symmetry, in the absence of dissipation this solution would behave exactly like the previous
solution. Figure 12 shows that after only 10 days the solitary wave is barely recognizable
having dissipated to about half its strength. Its ghost remains in the persistent boundary
layer flow which continues to dissipate the wave.

We conclude that many of the solitary waves present in the ideal case can be expected
to persist in the presence of boundary layer dissipation. In particular, localized structures
which are superimposed on slaved or nearly slaved mean flows and which have the necessary
weak flow at the base of the troposphere can exist quite unaffected by dissipation over
intraseasonal timescales. Specifically superimposed cyclonic (anti-cyclonic) barotropic and
anti-cyclonic (cyclonic) baroclinic solitary waves will be long lived even in the presence of
boundary layer dissipation. Solitary waves with the same sense of barotropic and baroclinic
rotation will tend to dissipate rapidly.

5.2. Effect of dissipation on tropical winds forced by midlatitude waves

MB consider an initial condition with baroclinic wave amplitude equal to zero. The
energy is concentrated in the barotropic wave train and the baroclinic and barotropic mean
flows. There is no barotropic zonal mean shear whereas the baroclinic mean shear velocity
is 5ms~! at the equator. Using the same initial conditions MB discussed how vertical mean
shear arising from baroclinic mean shear provides a route for midlatitude connections. The
initial condition is shown in figure 13 (a) and the corresponding flow field at the bottom
and top of the troposphere are shown respectively in figures 13 (c) and (d). The boundary
layer flow, which is absent in the ideal case, is shown in figure 13 (b). It consists of three
strong eastward divergent winds at the flow maxima at the base of the troposphere, which
are also the maxima of the barotropic waves. There also westward and eastward flows at
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higher latitudes. These are located at the maxima and minima of the barotropic waves and
are a reflection of the strong winds at midlatitudes associated with the barotropic waves.

After 14 days much dissipation has occurred but there has also been a significant
transfer of energy to baroclinic waves. In figure 14 strong baroclinic wave activity is
evident in the left half of the domain. The dominance of the baroclinic component of the
velocity field around x = 15 is the remnant of the “westerly wind burst-like” event that was
described by MB. Furthermore, it is clear from the boundary layer flow, figure 14 (b), that
the dissipation is concentrated around this structure.

As a measure of the effect of dissipation we compare the diagnostics of the ideal case
considered by MB at 14 days to those of the dissipative case considered here. In particular
the baroclinic mean shear decreases from 5ms~! in the ideal case to 2.5 ms™! in the presence
of dissipation. There is actually barotropic mean shear generation in this example with the
mean shear decreasing from zero to —0.75 ms™!, consistent with its drive to a slaved mean
flow state. For the energy diagnostics we define xp to be the ratio of energies at 14 days in
the dissipative example to that in the ideal example. D denotes the energy considered and
shall take the values D = tot, A, B which are the total energy, baroclinic wave energy and
barotropic wave energy, respectively. The numerical results yield

Xiot = 0.36, x4 =022, xp=0.62 (70)

Clearly the dissipation is effective at inhibiting baroclinic wave forcing by barotropic waves.
However as is evident from figure 14, the most interesting strong localized structures do
persist. After 14 days, the ratio of baroclinic to barotropic wave energies in the ideal case
was 1.1 indicating a strong connection whereas in the dissipative setting the connection is
much weaker with the ratio being 0.4.

5.3. Effect of dissipation on midlatitude waves driven by tropical winds

MB considers the transfer of energy from an initial equatorial baroclinic wave train to
barotropic waves with significant midlatitude projection. Using a baroclinic initial mean
shear of 5.0ms™!, a barotropic initial mean shear of 2.5 ms™! and the same initial conditions
of MB, the equations are numerically integrated in the presence of both boundary layer
and thermal dissipation. The initial condition is shown in figure 15 (a), the baroclinic
wave and mean amplitude being the dashed curve while the barotropic wave and mean
amplitude is solid. The tropospheric flow associated with this wave train (figures 15 (c)
and (d)) is highly antisymmetric between the top and bottom. The flow mainly consists of
two localized baroclinic structures which are westerly at the ground plus an easterly wind
leading located near z = 35. The boundary layer flow in figure 15 (b) is dominated by the
two divergent, westerlies associated with the baroclinic cyclones in the troposphere. The
easterly, convergent boundary layer flow associated with the easterly wind at the base of
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the troposphere is weaker than its westerly counterparts. The boundary layer flow at higher
latitudes is much weaker than the previous example since the barotropic amplitudes are
much smaller here.

Figure 16 shows the amplitudes and flow fields after 14 days. Though the baroclinic
waves are much dissipated, there is yet a significant transfer of energy to the barotropic
waves in the form of the strong barotropic wave packet around x = 15. Nonetheless the
strongest boundary layer winds occur near this packet and are divergent westerlies at the
equator with easterly return flows at higher latitudes; indicative of the overlying barotropic
wave.

In this example, the dissipative dynamics dramatically reduces the mean flows. At 14
days the baroclinic mean shear is 1.75ms~! while the barotropic mean shear is 0.71 ms~*.

The ratio of the dissipated energies to the original energies are
Xtot = 0.24, x4 =0.13, xp =0.29. (71)

The energy of the dissipative waves is greatly reduced even in comparison to the previous
example. As a measure of the efficacy of wave energy exchange, the ratio of barotropic to
baroclinic wave energy in the non-dissipative case is 0.53 whereas in the dissipative case the
ratio is 0.59. Since the two ratios are nearly equal it seems that dissipation does not greatly
affect wave energy transfer in this example.

In summary, it appears that dissipation is very effective at modifying the mean flow of
the waves which, in turn, can affect the energy transfer. Nonetheless coherent structures
which exist in the non-dissipative examples persist in the dissipative examples. The basic
qualitative result that there is significant energy exchange between the midlatitudes and
the tropics in the presence of baroclinic mean shears is not affected by the dissipation.

5.4. Dissipation Balanced states

Since the previous examples suggest that the modification of the mean flows is the
primary effect of dissipation on barotropic and baroclinic wave energy exchange, it is useful
to consider initial mean shear profiles which do not change significantly under dissipation.
In this section we consider the reduced equations for equatorial baroclinic and barotropic
waves only in the presence of boundary layer dissipation; thermal dissipation is set to
zero. We select initial conditions so that the mean flows are already slaved according to
equation (62), the baroclinic mean shear is —4.5ms™! at the base of the troposphere while
the barotropic mean shear is 3.1 ms™! at the base of the troposphere. The barotropic and
baroclinic waves are initialized with random wave packets and the initial conditions, waves
and means, are shown in figure 17 (a). The wind profile shows very strong barotropic waves
near z = 5 and 25 while there is a mixed barotropic/ baroclinic packet near x = 32. The
boundary layer flow in figure 17 (c) has a bit of everything. There are convergent easterly
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and divergent westerly flows near the equator when there are strong winds in the overlying
troposphere. Furthermore there are easterly flows at higher latitudes over regions where the
tropospheric waves are strongly barotropic.

These initial conditions are integrated for long times compared to the other results
we have presented. After 60 days of interaction the waves settle into a slowly decaying
state (shown in figure 18) which persists for much later times. At this time the zonal
mean baroclinic shear is —3.5ms™! and the barotropic mean shear is 2.4ms™!, having
changed little from their initial conditions. The amplitudes in figure 18 (a) bear a striking
resemblance to a packet of multiple slaved solitary waves of the type shown in figure 9. In
fact, all of the wave packets travel at almost the same velocity, —11 ms ! with respect to the
stationary frame. The barotropic amplitude has a clear plateau level with three localized
wave packets at x = 11,20 and 33 which oppose the mean barotropic shear. Similarly the
baroclinic amplitudes have a clear plateau of the opposite sign of the barotropic plateau
with three wave packets at the same location of the barotropic packets and which also
oppose the baroclinic mean shear. The velocity field is extremely weak at the bottom of the
troposphere being most dominant in the parts of the domain described as the plateau, in
particular around z = 5 and 26. The boundary layer velocity is easterly and convergent in
the regions where the dissipation is greatest.

At the top of the troposphere in figure 18 (d) the flow is again reminiscent of figure 9
(d). The centers of these solitary wave-like packets are anticyclonic vortices at the top of
the troposphere. In the domains of the amplitude plateaus there are strong westerly winds
at the equator which, when the plateau encounters a wave packet, turn around into long
cyclonic gyres.

To summarize, random initial wave packets superposed on slaved mean flows have a
tendency to settle into a collection of solitary wave-like packets over a slowly decaying mean
flow state.

6. Concluding Discussion

We have derived a reduced model for the interaction of equatorial baroclinic and
barotropic waves in the presence of boundary layer and thermal dissipation. The equations
arise through the same long wave, low Froude number scaling of MB. The ratio of meridional
to zonal flows in the troposphere is proportional to the small ratio of meridional length
scales to zonal length scales. Conversely, the dominant balance in the atmospheric boundary
layer allows meridional flows to be of the same order as zonal flows there. The lowest order
asymptotics of the boundary layer are simply the equatorial Ekman equations. Therefore
meridional and zonal boundary layer flows are proportional to the negative of the meridional
pressure gradient in the overlying free troposphere. Equatorial high pressures at the base
of the free troposphere drive divergent easterly flows in the boundary layer, enhancing
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momentum dissipation. Similarly, low pressure centers at the bottom of the troposphere
drive convergent easterly flows in the boundary layer, also a source of dissipation. When
coupled to the equatorial baroclinic and barotropic long wave equations the lowest order
source of boundary layer dissipation arises from the meridional component of the boundary
layer flow. Therefore the dynamics drive the boundary layer flow to a minimum meridional
velocity. This implies that the dynamics in the troposphere tends to minimize the pressure
at the base or equivalently minimize the zonal velocity there. When incorporated into
the amplitude equations (DREBB), this tendency is manifested as a near degeneracy of
the boundary layer dissipation matrix. The presence of thermal dissipation breaks this
degeneracy.

The results of numerical simulations indicate that boundary layer and thermal
dissipation can significantly reduce the zonal mean flows unless they are initialized with
small zonal velocity at the base of the free troposphere. The dissipation of mean flows,
in turn, can inhibit wave energy exchange between the tropics and midlatitudes. In
general the boundary layer dissipation is very efficient for barotropic/baroclinic cyclones or
anti-cyclones but is much weaker for barotropic and baroclinic waves of opposite rotation.
Strong coherent structures which form are less effected by the dissipation of mean flows
since their energy transfer tends to be through direct wave-wave interaction, not mediated
by baroclinic zonal mean flows. Initial wave trains interacting in the presence of balanced
zonal mean climate states themselves evolve to a slaved wave state and persist over seasonal
timescales. The dissipative balanced state consists of a collection of coherent wave packets
similar to solitary waves for which the flow at the base of the free troposphere is minimum.

The systematic inclusion of boundary layer forcing can be applied to other asymptotic
regimes. For example, Majda and Klein (2002) have derived scalings from the planetary to
the synoptic scales in which there are resonant midlatitude to tropics connections. They
can also be included in a straightforward manner in the more general theory equatorial
Rossby waves in mean shears derived by Biello and Majda (2003). Finally, the unforced
waves we have considered always decayed with time. However, the atmosphere is subject to
seasonally varying thermal and convective forcing which, in the presence of damping could
force the waves and mean flows into new balanced states. The inclusion of this seasonal
forcing would provide an important extension of the theory which we shall consider in
future work. Another interesting direction is to utilize these models for the equatorial ocean
in a different parameter regime.
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Fig. 1.— The structure of the velocity as a function of depth. (a) The left curve shows the
barotropic mean wind in the free troposphere and boundary layer as a function of height;
horizontal velocity is not continuous across z = 0 and thee is a vortex sheet there. The
right curve shows the baroclinic mean shear which exists only in the free troposphere in this
model. The dependence of the vertical velocity on height is shown in (b). In the left curve is
plotted the the barotropic component which is zero at the ground, increases linearly to the
top of the boundary layer and then decreases linearly to zero throughout the troposphere.
This vertical velocity is the source of the divergence of the horizontal component of the
barotropic flow in the troposphere. The baroclinic component is plotted at the right and is
zero at the top and bottom of the free troposphere.
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Fig. 2.— Zonal mean velocity fields for slaved flows, m = 1. (a) Zonal mean velocity at the
top of the free troposphere. (b) Zonal mean velocity at the base of the free troposphere. (c)
Meridional velocity in the boundary layer. (d) Zonal velocity in the boundary layer.
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Fig. 3.— Zonal mean velocity fields for the adjustment flow, m = 1. (a) Zonal mean velocity
at the top of the free troposphere. (b) Zonal mean velocity at the base of the free troposphere.
(c) Meridional velocity in the boundary layer. (d) Zonal velocity in the boundary layer.
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Fig. 4.— Zonal mean velocity fields for the slaved flow, m = 2. (a) Zonal mean velocity at
the top of the free troposphere. (b) Zonal mean velocity at the base of the free troposphere.
(c) Meridional velocity in the boundary layer. (d) Zonal velocity in the boundary layer.
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Fig. 5.— Zonal mean velocity fields for the adjustment flow, m = 2. (a) Zonal mean velocity
at the top of the free troposphere. (b) Zonal mean velocity at the base of the free troposphere.
(c) Meridional velocity in the boundary layer. (d) Zonal velocity in the boundary layer.
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Fig. 6.— (a) Damping times as a function of thermal dissipation coefficient, dg for m = 1.
As dy increases the timescale of the slow mode decreases dramatically, thereby destroying
the exact slaving. However, the two decay timescales do remain well separated. The fast
mode is essentially unaffected. (b) The ratio of the zonal mean barotropic to baroclinic
velocity at the bottom of the free troposphere at the equator for each of the eigenvectors of
the dissipation matrix. The negative branch corresponds to the slowly damped mode.
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Fig. 7.— Case 1, dy = 0, positive barotropic wind at the base of the free troposphere at
the equator. (a) Damping time as a function of zonal wave number. (b) Wave speed in the
stationary frame as a function of zonal wavenumber. The upper branch corresponds to the
slowly damped waves.
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Fig. 8.— Case 4, dy = 0.67, negative barotropic wind at the base of the free troposphere at
the equator. (a) Damping time as a function of zonal wave number. (b) Wave speed in the
stationary frame as a function of zonal wavenumber. The lower branch corresponds to the
more slowly damped waves.
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Fig. 9.— Initial condition for a 11400 km solitary wave traveling at —15ms™". (a) Wave
Amplitudes, solid - barotropic, dashed - baroclinic. (b) Velocity in the boundary layer. (c)
Velocity at the base of the free troposphere. (d) Velocity at the top of the free troposphere.
The flows in all the figures are shown in the carrier wave frame of reference, —16.6 ms—*. For
all of the solitary waves, the tropospheric flow vectors are plotted with the same scaling as
are the boundary layer flow vectors, the latter being stretched to emphasize flow features.
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(a) Amplitudes; Time =20 Days
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10.— The solitary wave of figure 9 after 20 days.

(a) Wave Amplitudes, solid -

barotropic, dashed - baroclinic. (b) Velocity in the boundary layer. (c) Velocity at the
base of the free troposphere. (d) Velocity at the top of the free troposphere.
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(a) Amplitudes; Time =0 Days

= = T L T g T
Es o5 o5 o> o> —> > s o m w v . e e e w s e s s s s s s s s s
L . o
[P S S I L T T S S S|
e < < < < < << — ~ P GG,
<< <—<—<—<—<- % % ‘ {7 TN\ | s o<
,,,,,, <~ ~ v A ff,\\\ I
éééé»—},a)/)/?/’///1\\(\(/// t VNN S
>TSS = L] s
<~ —
R N
e i ESGNGIN //k&\\ V5555227
&&&&&&& ///‘f&\\,/1Vk\\\\\\g,,,,
e << << e, | A>T NS s o< <c<<
<< << << <<« « 1 5 5> o s e e s << << << <<
P = T T T O U U DI P D S S
o o
s 0 s s s s s e e e e e~ e, S I Y
| —_l 1 ke 1 s L
0 5 10 15 20 25 30 35 40
d) Velocity at top of troposphere
y P posp!
=T e T L T N T
e e e e e P ' i

'
e e e e R 2 U N N U e e
DR i -~ - 7 et R e |
&&&&&&&&&& -~ - - L T
&&&&&&&&&& N s s N s s e e e e e e
— o — <« - e - - ~ = = . R e RSP

e e« «— « « <« < - - s - B i
— o - - - - - = s < P e i |
&&&&&&&&&&&&&&& N e e e e e e e e e o
e e N i R R |
D T N T T 2 ERE i o <« <
e e e = = e =~ ~ Vol s e U S e e e e e e e e e e
,,,,,,,,, [ N s s e e e e e e e = 4

,,,,,,,,,, A U Ly Y s s e e e e s

P s = = = = s N~ e e N e

N 1 L 1 e L
0 5 10 15 20 25 30 35 40

Zonal (x 1000 km)

Fig. 11.— Initial condition for another 11400 km solitary wave traveling at —15ms™*. (a)

Wave Amplitudes, solid - barotropic, dashed - baroclinic.

(b) Velocity in the boundary

layer. (c) Velocity at the base of the free troposphere. (d) Velocity at the top of the free

troposphere.
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(a) Amplitudes; Time =10 Days
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Fig. 12.— The remnants of the solitary wave of figure 11 after 10 days.

The amplitudes

are already greatly decayed and by 20 days are absolutely negligible. (a) Wave Amplitudes,
solid - barotropic, dashed - baroclinic. (b) Velocity in the boundary layer. (c) Velocity at
the base of the free troposphere. (d) Velocity at the top of the free troposphere.
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(a) Amplitudes; Time =0 Days
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Fig. 13.— Initial velocity profile of a barotropic wave train with no initial barotropic mean
wind and baroclinic mean shear of 5ms™!. (a) Wave Amplitudes, solid - barotropic, dashed -
baroclinic. (b) Velocity in the boundary layer. (c) Velocity at the base of the free troposphere.
(d) Velocity at the top of the free troposphere.
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(a) Amplitudes; Time =14 Days
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Fig. 14.— Velocity profile 14 days after an initially barotropic wave train with no initial
barotropic mean wind and baroclinic mean shear of 5ms™!. The “westerly wind burst”-like
event persists despite both boundary layer and thermal dissipation dissipation. (a) Wave
Amplitudes, solid - barotropic, dashed - baroclinic. (b) Velocity in the boundary layer. (c)
Velocity at the base of the free troposphere. (d) Velocity at the top of the free troposphere.
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(a) Amplitudes; Time =0 Days
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Fig. 15.— Initial velocity profile of a baroclinic wave train with barotropic mean wind of
2.5ms™! and baroclinic mean shear of 5ms™!. (a) Wave Amplitudes, solid - barotropic,
dashed - baroclinic. (b) Velocity in the boundary layer. (c) Velocity at the base of the free

troposphere. (d) Velocity at the top of the free troposphere.
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(a) Amplitudes; Time =14 Days
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Fig. 16.— Velocity profile 14 days after an initially baroclinic wave train with barotropic
mean wind of 2.5ms™! and baroclinic mean shear of 5ms™!. A strong barotropic wave
packet near x = 20 indicates that dissipation does not inhibit the conversion of baroclinic
wave energy to barotropic wave energy. (a) Wave Amplitudes, solid - barotropic, dashed -
baroclinic. (b) Velocity in the boundary layer. (c) Velocity at the base of the free troposphere.

(d) Velocity at the top of the free troposphere.
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Fig. 17— Random initial wave packet on a mean baroclinic shear of —4.5ms™! and a mean
, which are in a balanced state. (a) Wave Amplitudes, solid -
barotropic, dashed - baroclinic. (b) Velocity in the boundary layer. (c) Velocity at the base

barotropic wind of 3.1 ms™
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(a) Amplitudes; Time =0 Days

T T T
| P I i i ad L A LR e -
. By B TR P N e et e
J 77 i 0 Vi PR
<L O X { 1
<o M) \\\}\\\ NN S L NN \\5\3“ SRS Y
>‘\&&\\\ © s m o~ NSNS . NSNS o ~
“*&\&\: - L \\‘\“N& L - === -
5 10 15 20 25 30 35 40
(c) Velocity at bottom of troposphere
T T T T =T
rN /7> -~ = ~ e~ Vs . e s T = p
I N R A B A A
F S S N S S [ \
/!M\k(,,,,\\\,,//w\k//,///\//)ﬂ
iR T == Ulssiul I B A
N “z ~~NN N s s frETS TN \////‘i/
A B NN R L AN A
S A NS S B AR A
f— = = - £ (SN
-~ N\ 7. SN ¥V N
N A a e PN N S SN sra AN S
VAN SNV L ANANAN N /I N N
- &///// 1 \\\‘Y */ /\ \\“\
LovsSs< T 27200 0L L s [/ k\ﬁ\ NN
M (ESS—<—<— « = -+ 7 S S ] \\‘A(\\\\/
N P A NI S NN !
\‘\‘///, ,/vy,‘\x\Arry\\\\a/\
7/‘ t\\ﬁéﬁ/)z,,,\\&// ~—T \\XM/»\\?
| N L Il L 1 =l
5 10 15 20 25 30 5 40
(d) Velocity at top of troposphere
T T T
N 7 > - ~ N =~ N 7/ =
N R AN S A At /
//\&///,// \ \~'\;\&\€/,, L\
= L—— o e = -~ S s — < RN
\\/e&&$ekke [ ﬂ\\,e&&x&/ ?/
PR N N A N /\\\‘4
\J N \ﬁ,///\i‘{x\\»/fxx \\
‘L\gx,_yxaﬁg‘)/r/, N \\M/, N S—
- — - — R e SR
7 > o - = N A L
Yf/,?ﬁ_ AN Sl <
A NN A AP /k
A I N \GK/K*
L > P A s ~ A\ -
AR NN N N
\/// P L T T /// VN e //r
O A R C
L, { \‘xéﬁ/z‘/))/ y‘\«e/‘/ \\)‘?/7/1 ‘\ \x“) N
5 10 15 20 25 30 35 40

1

Zonal (x 1000 km)

of the free troposphere. (d) Velocity at the top of the free troposphere.



— 52 —

(a) Amplitudes; Time =60 Days
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Fig. 18.— 60 days after figure 17 the waves become slaved to a slowly decaying state
which is reminiscent of collection of solitary waves. (a) Wave Amplitudes, solid - barotropic,
dashed - baroclinic. (b) Velocity in the boundary layer. (c) Velocity at the base of the free
troposphere. (d) Velocity at the top of the free troposphere.



