Arctic Sea Ice Reemergence: The Role of Large-Scale Oceanic and Atmospheric Variability

Mitchell Bushuk, * Dimitrios Giannakis, and Andrew J. Majda

Courant Institute of Mathematical Sciences, New York University, New York, New York

*Corresponding author address: Mitch Bushuk, Center for Atmosphere Ocean Science, Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY, 10012.
E-mail: bushuk@cims.nyu.edu
ABSTRACT

Arctic sea ice reemergence is a phenomenon in which spring sea ice anomalies are positively correlated with fall anomalies, despite a loss of correlation over the intervening summer months. This work employs a novel data analysis algorithm for high-dimensional multivariate datasets, coupled nonlinear Laplacian spectral analysis (NLSA), to investigate this reemergence phenomenon. Coupled NLSA modes of variability of sea ice concentration (SIC), sea surface temperature (SST), and sea level pressure (SLP) are studied in the Arctic sector of a comprehensive climate model and in observations. It is found that low-dimensional families of NLSA modes are able to efficiently reproduce the prominent lagged correlation features of the raw sea ice data. In both the model and observations, these families provide an SST-sea ice reemergence mechanism, in which melt season (spring) sea ice anomalies are imprinted as SST anomalies and stored over the summer months, allowing for sea ice anomalies of the same sign to reappear in the growth season (fall). The ice anomalies of each family exhibit clear phase relationships between the Barents-Kara Seas, the Labrador Sea, and the Bering Sea, three regions that comprise the majority of Arctic sea ice variability. These regional phase relationships in sea ice have a natural explanation via the SLP patterns of each family, which closely resemble the Arctic Oscillation and the Arctic Dipole Anomaly. These SLP patterns, along with their associated geostrophic winds and surface air temperature advection, provide a large-scale teleconnection between different regions of sea ice variability. Moreover, the SLP patterns suggest another plausible ice reemergence mechanism, via their winter-to-winter persistence.
1. Introduction

Arctic sea ice is a sensitive component of the climate system, with dynamics and variability that are strongly coupled to the atmosphere and ocean. This sensitivity is evident in the recent precipitous decline in September sea ice extent, of roughly 9% per decade since 1979 (Stroeve et al. 2007; Serreze et al. 2007). Trends in sea ice extent are negative for all months of the year and all Arctic regions except for the Bering Sea (Cavalieri and Parkinson 2012). In addition to these strong trends, Arctic sea ice also exhibits large internal variability. Studies using comprehensive climate models have estimated that 50-60% of recent Arctic sea ice changes can be attributed to externally forced trends, with the remainder resulting from internal variability in the climate system (Kay et al. 2011; Stroeve et al. 2012). Therefore, the challenge of making accurate projections of future Arctic sea ice conditions crucially hinges on: (1) quantifying the sea ice response to changes in external forcing (i.e., greenhouse gas forcing) and (2) understanding the nature and magnitude of internal variability in the coupled ice-ocean-atmosphere system. This study will focus on the latter.

The Arctic regions of interest in this study are shown in Fig. 1. The leading empirical orthogonal function (EOF) of observational Arctic sea ice concentration (SIC) exhibits strong out-of-phase anomalies between the Labrador and Greenland-Barents Seas and weaker out-of-phase anomalies between the Bering Sea and Sea of Okhotsk (Deser et al. 2000). Regression of sea level pressure (SLP) onto the corresponding principal component (PC) yields a spatial pattern which closely resembles the Arctic Oscillation (AO, Thompson and Wallace 1998), the leading pattern of SLP variability north of 20°N. Deser et al. (2000) observe that the AO and its associated geostrophic winds are physically consistent with the ice anomalies of the leading SIC mode. These winds have thermodynamic and dynamic effects on sea ice via advection of surface air temperature and ice advection. Many other studies have analyzed sea ice variability in the context of the AO (Rigor et al. 2002; Serreze et al. 2003; Rigor and Wallace 2004; Ogi and Wallace 2007). These studies suggest that a “high-index” AO produces an Ekman divergence, leading to reductions in sea ice thickness and concentration.
This process has been proposed as a mechanism for the recent decline in Arctic sea ice.

Others have questioned the efficacy of the AO as a predictor for sea ice changes (Maslanik et al. 2007), suggesting that other patterns of large-scale atmospheric variability may play a more important role. In particular, an SLP pattern known as the Arctic Dipole Anomaly (DA) has drawn considerable recent attention (Wu et al. 2006; Wang et al. 2009; Tsukernik et al. 2010; Overland and Wang 2005, 2010; Watanabe et al. 2006). The DA exhibits opposite-signed SLP anomalies between the Eastern and Western Arctic, which drive strong meridional winds. These winds act to enhance (reduce) sea ice export from the Arctic basin through Fram Strait when the DA is in positive (negative) phase. Recent record lows in summer sea ice extent generally correspond to years in which the DA index was positive (Wang et al. 2009). DA-like SLP patterns have also been associated with the large internal variability observed in the sea ice component of the Community Climate System Model Version 3 (CCSM3, Collins et al. 2006; Wettstein and Deser 2014). Other studies have suggested that the location and frequency of storms (Screen et al. 2011), and the phase of the Pacific-North-America (PNA) pattern (L’Heureux et al. 2008) also play an important role in setting the summer sea ice minimum.

The variability of Arctic sea ice is also strongly coupled to sea surface temperature (SST) variability (e.g., Francis and Hunter 2007). Blanchard-Wrigglesworth et al. (2011) proposed a mechanism for sea ice-SST co-variability, in which sea ice and SST anomalies trade off, allowing for unexpected “memory” effects in sea ice. These memory effects were termed “sea ice reemergence”, inspired by the similar North Pacific and North Atlantic SST phenomena (Alexander et al. 1999; Timlin et al. 2002; de Cotlogon and Frankignoul 2003). Sea ice reemergence is a lagged correlation phenomenon, in which spring sea ice anomalies are positively correlated with fall sea ice anomalies, despite a loss of correlation over the intervening summer months. The mechanism of Blanchard-Wrigglesworth et al. (2011) suggests that spring sea ice anomalies imprint SST anomalies of opposite sign, which persist over the summer months. During the fall, ice grows southward and interacts with these SST anoma-
lies, reproducing ice anomalies of the same sign as the spring. This reemergence mechanism has been observed in the North Pacific sector in CCSM3 model output and observations (Bushuk et al. 2014). Deser et al. (2002) note a similar winter-to-winter persistence of sea ice anomalies in the Labrador sea, and propose an SLP-sea ice reemergence mechanism, in which sea ice anomalies persist due to a winter-to-winter persistence of large-scale SLP patterns.

In this study, we examine the coupled variability of Arctic SIC, SST, and SLP using nonlinear Laplacian spectral analysis (NLSA), a recently developed data analysis technique for high-dimensional nonlinear datasets (Giannakis and Majda 2012a,b, 2013). The NLSA algorithm is a nonlinear manifold generalization of singular spectrum analysis (SSA, Broomhead and King 1986; Vautard and Ghil 1989; Ghil et al. 2002). SSA is also commonly referred to as extended empirical orthogonal function (EEOF) analysis. Here, we apply the multivariate version of the NLSA algorithm, coupled NLSA (Bushuk et al. 2014), which provides a scale-invariant analysis of multiple variables with different physical units. Coupled NLSA yields spatiotemporal modes, analogous to EEOFs, and temporal modes, analogous to PCs. These modes are constructed using a set empirically derived Laplacian eigenfunctions on the nonlinear data manifold and, unlike linear approaches, do not maximize explained variance. Such modes are known to have high dynamical significance in nonlinear systems (Giannakis and Majda 2012b; Berry et al. 2013), and, in the present context, are efficient in explaining reemergence phenomena (Bushuk et al. 2014).

We use coupled NLSA modes to study the basin-wide and regional characteristics of Arctic sea ice reemergence in a comprehensive climate model and observations. We compute modes using CCSM3 model output from a 900-year equilibrated control integration. Modes are also obtained for the 34-year observational record, using SIC and SST data from the Met Office Hadley Center Sea Ice and Sea Surface Temperature (HadISST, Rayner et al. 2003) dataset and SLP data from the European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Reanalysis project (ERA-Interim, Dee et al. 2011). Using these
modes, we identify low-dimensional families which efficiently describe sea ice reemergence. These families suggest SST and SLP based reemergence mechanisms consistent with those of Blanchard-Wrigglesworth et al. (2011) and Deser et al. (2002). Moreover, strong phase relationships are found between sea ice reemergence events in geographically distinct regions. These phase relationships are associated with large-scale patterns of atmospheric variability.

This paper is organized as follows: In section 2, we summarize the coupled NLSA algorithm. In section 3, we describe the CCSM3, HadISST, and ERA-Interim datasets used in this study. In section 4, we study the SIC, SST, and SLP spatiotemporal modes obtained via coupled NLSA. In section 5, we use these modes to investigate oceanic and atmospheric mechanisms for sea ice reemergence. We conclude in section 6. Movies, illustrating the spatiotemporal evolution of NLSA modes, are available as online supplementary material.

2. Coupled NLSA methodology

In this study, we apply the coupled NLSA approach, as developed in Bushuk et al. (2014), to Arctic SIC, SST, and SLP. This technique is an extension of the recently developed NLSA algorithm (Giannakis and Majda 2012b, 2013), and provides a scale-invariant approach for multivariate time series analysis. Here, we briefly summarize the method and refer the reader to the more thorough description of Bushuk et al. (2014).

Figure 2 is a schematic that summarizes the flow of data in the coupled NLSA algorithm. Let x^SIC_t, x^SST_t, and x^SLP_t be time series for SIC, SST, and SLP, respectively, each sampled uniformly at time step δt, with s time samples. Let d^SIC, d^SST, and d^SLP be the number of spatial gridpoints for each variable. First, we choose a time lag window $\Delta t = q\delta t$, and time-lag embed our data into the higher dimensional spaces $H^\text{SIC} = \mathbb{R}^{d^\text{SIC}q}$, $H^\text{SST} = \mathbb{R}^{d^\text{SST}q}$,
\(H_{\text{SLP}} = \mathbb{R}^{d_{\text{SLP}}q} \). Time-lagged embedding is performed via the delay-coordinate mappings

\[
\begin{align*}
X^\text{SIC}_t &\mapsto X^\text{SIC}_t = (x^\text{SIC}_t, x^\text{SIC}_{t-\delta t}, \ldots, x^\text{SIC}_{t-(q-1)\delta t}), \\
x^\text{SST}_t &\mapsto X^\text{SST}_t = (x^\text{SST}_t, x^\text{SST}_{t-\delta t}, \ldots, x^\text{SST}_{t-(q-1)\delta t}), \\
x^\text{SLP}_t &\mapsto X^\text{SLP}_t = (x^\text{SLP}_t, x^\text{SLP}_{t-\delta t}, \ldots, x^\text{SLP}_{t-(q-1)\delta t}).
\end{align*}
\]

The coupled NLSA approach uses this time-lagged embedded data to construct a set of orthonormal basis functions on the nonlinear data manifold. These basis functions are eigenfunctions of a discrete Laplacian operator, and are computed using the physical variables of interest, as determined by the user of the algorithm. In this work, the eigenfunctions are constructed using SIC, SST, and SLP. Next, we compute a pairwise kernel function \(K \) on the data:

\[
K_{ij} = \exp\left(-\frac{\|X^\text{SIC}_i - X^\text{SIC}_j\|^2}{\epsilon\|\xi^\text{SIC}_i\|\|\xi^\text{SIC}_j\|} - \frac{\|X^\text{SST}_i - X^\text{SST}_j\|^2}{\epsilon\|\xi^\text{SST}_i\|\|\xi^\text{SST}_j\|} - \frac{\|X^\text{SLP}_i - X^\text{SLP}_j\|^2}{\epsilon\|\xi^\text{SLP}_i\|\|\xi^\text{SLP}_j\|} \right),
\]

where \(i, j \in [q + 1, q + 2, \ldots, s] \). Here, \(\epsilon \) is a scale parameter controlling the width of the Gaussian, and \(\xi^k_i = X^k_i - X^k_{i-1} \) is the phase space velocity of the \(k^{\text{th}} \) variable. Note that because of the division by \(\|\xi^k_i\| \), the argument of the exponential is unit-independent, allowing for a natural comparison of the different variables in the system. Performing an appropriate normalization, we convert \(K \) to a Laplacian matrix, \(L \), and solve the eigenvalue problem

\[
L\phi_i = \lambda_i \phi_i.
\]

This yields a set of discrete Laplacian eigenfunctions \(\{\phi_1, \phi_2, \ldots, \phi_{s-q}\} \), each of which is a temporal pattern of length \(s - q \). We use these eigenfunctions as a temporal filter for the data, analogous to Fourier modes.

Let \(\Phi_l \) be the matrix whose columns consist of the leading \(l \) eigenfunctions. Let \(X^k : \mathbb{R}^{s-q} \mapsto \mathbb{R}^{qd_k} \) be the lag-embedded data matrix for the \(k^{\text{th}} \) variable:

\[
X^k = \begin{bmatrix} X^k_{q+1} & X^k_{q+2} & \cdots & X^k_s \end{bmatrix}.
\]
Projecting X^k onto the leading l Laplacian eigenfunctions, we construct linear maps A^k_l:

$$A^k_l = X^k \mu \Phi_l.$$ \hspace{1cm} (1)

Here $\tilde{\mu}$ is the stationary distribution of the Markov chain corresponding to K, and μ is a diagonal matrix with $\tilde{\mu}$ along the diagonal. Note that the variables used to construct the eigenfunctions do not necessarily need to coincide with the variables for which we compute the A^k_l operators. For example, we can use the SIC–SST–SLP eigenfunctions to filter any other variable of interest in our system.

Singular value decomposition (SVD) of the operator A^k_l yields a set of spatiotemporal modes $\{u^k_n\}$ of dimension qd_k, analogous to EEOFs, and a corresponding set of length l vectors, $\{V^k_n\}$. These $\{V^k_n\}$ are the expansion coefficients in eigenfunction basis. Expanding using the first l eigenfunctions, we recover a set of temporal modes $\{v^k_n(t)\}$ of length $s - q$, analogous to PCs. Forming products $u^k_n \sigma^k_n(v^k_n)^t$ and projecting from lagged embedding space to physical space using the standard approach (Ghil et al. 2002), we obtain reconstructed fields $\tilde{u}^k_n(t)$.

3. Dataset description

a. CCSM3 Model Output

This study analyzes model output from a 900-yr equilibrated control integration of CCSM3 (Collins et al. 2006). We use monthly averaged data for SIC, SST, and SLP, which come from the Community Sea Ice Model (CSIM, Holland et al. 2006), the Parallel Ocean Program (POP, Smith and Gent 2004), and the Community Atmosphere Model version 3 (CAM3, Collins et al. 2004), respectively. The model uses a T42 spectral truncation for the atmospheric grid (roughly $2.8^\circ \times 2.8^\circ$), and the ocean and sea ice variables are defined on the same grid, of 1° nominal resolution. This study focuses on a pan-Arctic domain,
which we define as all gridpoints north of 45°N. Note that the seasonal cycle has not been removed from this dataset. This is crucial for capturing intermittent patterns associated with reemergence.

The spatial dimensions of these datasets are \(d_{\text{SIC}} = d_{\text{SST}} = 13,202 \) and \(d_{\text{SLP}} = 2,048 \). Using an embedding window of \(q = 24 \) (Bushuk et al. 2014; Giannakis and Majda 2012b), this yields lagged embedding dimensions of \(qd_{\text{SIC}} = qd_{\text{SST}} = 316,848 \) and \(qd_{\text{SLP}} = 49,152 \). This data is monthly averaged, and therefore consists of \(s = 10,800 \) time samples. The value of \(q = 24 \) months was used as the time lag because this embedding window is longer than the seasonal cycle, which is a primary source of non-Markovianity in this dataset.

b. **HADISST Observations**

We also analyze the Met Office Hadley Center Sea Ice and Sea Surface Temperature dataset (HadISST, Rayner et al. 2003), which consists of monthly averaged SIC and SST data on a 1° latitude-longitude grid. The spatial dimension of the Arctic domain is \(d_{\text{SIC}} = d_{\text{SST}} = 9,453 \). As with the CCSM3 data, we use an embedding window of \(q = 24 \) months, which yields lagged-embedding dimensions of \(qd_{\text{SIC}} = qd_{\text{SST}} = 226,872 \). In this study we use the satellite era data from January 1979–August 2013. Note that all ice-covered gridpoints in the HADISST dataset were assigned an SST value of \(-1.8^\circ\text{C}\), the freezing point of salt water at a salinity of 35 parts per thousand. Also, the trend in the dataset was removed by computing a long-term linear trend for each month of the year, and removing the respective linear trend from each month. The seasonal cycle has not been removed from this dataset.

c. **ERA-Interim Reanalysis Data**

Finally, we also study monthly averaged SLP data from the European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Reanalysis project (ERA-Interim, Dee et al. 2011). This data is on a 0.75° latitude-longitude grid, of considerably higher resolution
than the CCSM3 SLP data. The spatial dimension of the Arctic domain is $d_{SLP} = 29,280$, corresponding to a lagged-embedding dimension of $qd_{SLP} = 702,720$. This data has been detrended by subtracting the monthly trend from each month, but the seasonal cycle has not been subtracted.

4. Coupled SIC-SST-SLP spatiotemporal modes of Arctic variability

We utilize the coupled NLSA algorithm outlined in Section 2 to study the spatiotemporal evolution of (i) SIC, SST, and SLP in CCSM3; and (ii) SIC and SST from HADISST, and SLP from ERA-Interim. Hereafter, we refer to the joint HADISST and ERA-Interim datasets as observations. For both the model and observational data, we use a lagged-embedding window of $\Delta t = 24$ months. Different embedding windows were tested, yielding similar results for $\Delta t \geq 12$ months, and qualitatively different results for $\Delta t < 12$ months.

a. CCSM3 Modes

We choose ϵ, the Gaussian locality parameter, as $\epsilon = 0.90$. Using the spectral entropy criterion of Giannakis and Majda (2012a, 2013), we select a truncation level of $l = 27$ eigenfunctions, and express the data matrices X^{SIC}, X^{SST}, and X^{SLP} in this basis. SVD of the resulting operators (see eq. 1) yields a set of spatiotemporal patterns, $\{u_n^{SIC}\}$, $\{u_n^{SST}\}$, $\{u_n^{SLP}\}$, and a set of temporal patterns, $\{v_n^{SIC}\}$, $\{v_n^{SST}\}$, $\{v_n^{SLP}\}$, for each variable. The modes are ordered by decreasing singular value. In general, the temporal patterns for different variables need not be related. However, by virtue of the relatively low dimensionality of the eigenfunction basis relative to the original temporal dimension ($l = 27 \ll s = 10,800$), and the fact that the eigenfunctions incorporate information from all three variables, we find strong correlations between the PCs of different variables.
1) **Temporal Modes**

Figures 3, 4, and 5 show selected temporal patterns for SIC, SST, and SLP, respectively. For each variable, we observe three distinct types of temporal modes: periodic, low-frequency, and intermittent modes, indicated by P, L, and I in the figures.

The periodic temporal modes closely resemble sinusoids, with frequencies given by integer multiples of $1 \, \text{yr}^{-1}$. These modes appear as doubly degenerate pairs, with a phase offset of $\pi/2$. The leading periodic modes, representing the annual and semiannual cycles, capture more variance than the low-frequency and intermittent modes of the system. Higher harmonic periodic modes are found later in the mode spectrum. The low-frequency modes are characterized by significant interannual variability, and typically lose correlation after approximately 3 years. These modes carry significant spectral power at frequencies below $1 \, \text{yr}^{-1}$, and exhibit a sharp decline in spectral power at frequencies above this.

The intermittent modes are characterized by periods of intense activity followed by periods of quiescence. Each intermittent mode has a base frequency of oscillation, and a broadband peak in spectral power centered upon this frequency. These modes carry lower variance than their periodic and low-frequency counterparts, yet have potentially high dynamical significance. For example, annual and semiannual intermittent modes are crucial components in low-dimensional descriptions of sea ice reemergence phenomena (Bushuk et al. 2014).

Intermittent modes closely resemble a periodic signal modulated by a low-frequency envelope. We find that nearly all intermittent modes can be directly associated with a particular low-frequency mode, which provides this modulating envelope (Bushuk et al. 2014). To determine this association we compare the envelope function of the intermittent modes to the low-frequency modes. We find the envelope function via the Hilbert transform (von Storch and Zwiers 1999). Let $I(t)$ be a given intermittent mode and let $H(I)(t)$ be the Hilbert transform of I. Then the envelope function, $e(t)$, is given by $e(t) = \sqrt{I(t)^2 + H(I)(t)^2}$. Next, we determine which low-frequency mode provides this modulating envelope by performing
a correlation between $e(t)$ and $|L(t)|$, where $L(t)$ is a low-frequency mode. Fig. 6 shows these correlation values for intermittent and low-frequency modes of each variable, for both the model and observations. Note that the low-frequency-intermittent mode association is quite clear for most variables, except for the observational SLP, whose intermittent envelopes generally correlate weakly with the low-frequency modes. These mode associations will be utilized later in the paper, when we seek families of modes to describe sea ice reemergence.

As a comparison, we also performed SSA on the concatenated and unit-variance normalized SIC-SST-SLP dataset. Similar to the findings of Bushuk et al. (2014), SSA produces periodic modes, many low-frequency modes, and some modes that loosely resemble the intermittent modes of NLSA, with a spectral maximum at a certain base frequency. We find that the SSA modes do not share the same intermittent-low-frequency mode relationships as the NLSA modes.

2) SIC Spatiotemporal Patterns

Figure 7 shows spatial patterns of selected modes at a snapshot in time. Movies 1 and 2, in the online supplementary material, show the spatiotemporal evolution of these modes and others. Below, we describe the prominent features of the spatiotemporal modes recovered for SIC, SST, and SLP.

The annual periodic SIC modes, $\{P_{1}^{\text{SIC}}, P_{2}^{\text{SIC}}\}$ (Fig. 7a), have spatially uniform anomalies throughout most of the Arctic, except at high-latitude gridpoints where there is year-round ice coverage and in the marginal ice zones, where the anomalies are slightly weaker. These anomalies reach their maximum and minimum values in March and September, respectively. The higher frequency periodic modes have increasingly finer spatial structure, and capture a decreasing portion of the variance.

The low-frequency modes closely resemble the leading EOFs of Arctic SIC in the CCSM3 model. L_{1}^{SIC} (Fig. 7d) exhibits anomalies in the Bering, Beaufort, and Labrador Seas, which are out-of-phase with the anomalies of the Barents, Kara, and Greenland Seas. Computing
pattern correlations between the q spatial patterns of L_1^{SIC} and the different EOFs of seasonally detrended Arctic SIC, we find a maximum pattern correlation of 0.97 with EOF 1. L_2^{SIC} (Fig. 7g) has strong anomalies in the Bering and Labrador Seas, which are out-of-phase with one another. It also has weaker anomalies in the Sea of Okhotsk, Barents and Kara seas which are in-phase with the Bering Sea anomalies. This mode has a maximum pattern correlation of 0.77 with EOF 3.

Each intermittent mode has a natural association with a certain low-frequency mode, which acts as a modulating envelope for the intermittent mode. There is also a clear spatial connection, as the intermittent modes are active in the same parts of the domain as their low-frequency counterpart. The annual and semiannual intermittent mode pairs, $\{I_1^{\text{SIC}}, I_2^{\text{SIC}}\}$ and $\{I_7^{\text{SIC}}, I_8^{\text{SIC}}\}$, are associated with L_1^{SIC} (see Fig. 6). These modes pulse with annual and semiannual frequency, respectively, and exhibit finer spatial structure than L_1^{SIC}. In regions where L_1^{SIC} has monopole anomalies, these intermittent modes have dipole and tripole anomalies, respectively. The annual and semiannual intermittent modes, $\{I_3^{\text{SIC}}, I_4^{\text{SIC}}\}$ and $\{I_9^{\text{SIC}}, I_{10}^{\text{SIC}}, I_{11}^{\text{SIC}}\}$, are associated with L_2^{SIC}, and share similar spatial relationships.

3) SST Spatiotemporal Patterns

L_1^{SST} (Fig. 7e) has strong anomalies in the Bering Sea that extend southward into the Northeast Pacific, and anomalies of the opposite sign in the Barents and Kara Seas. There is also a North Atlantic signal with anomalies in the subpolar gyre region that are in-phase with the North Pacific anomalies. This mode has a maximum pattern correlation of 0.98 with EOF 1 of Arctic SST from CCSM3. L_2^{SST} (Fig. 7h) exhibits out-of-phase anomalies between the North Pacific and North Atlantic. The North Atlantic anomalies correspond to variability in the subpolar gyre, and the North Pacific anomalies are strongest in the Bering Sea, extending through most of the Pacific portion of the domain. This mode is most similar to EOF 2, with 0.96 pattern correlation.

The intermittent modes associated with L_1^{SST} and L_2^{SST} are $\{I_1^{\text{SST}}, I_2^{\text{SST}}, I_8^{\text{SST}}, I_9^{\text{SST}}\}$ and
\{I_{5}^{SST}, I_{6}^{SST}, I_{11}^{SST}\}, respectively. As with the SIC modes, these modes are active in the same parts of the domain as their associated low-frequency mode, and have finer spatial structure. A primary difference is that these intermittent modes exhibit spatially propagating anomalies, as compared with their stationary SIC counterparts. This propagation is most evident in the subpolar gyre region of the North Atlantic.

4) SLP Spatiotemporal Patterns

$L_{1}^{SLP \text{ (Fig. 7f)}}$ has a similar SLP pattern to the AO, with a strong anomaly centered over the pole, and strong anomalies of opposite sign in the North Atlantic and North Pacific basins. The AO is defined as the leading EOF of SLP north of 20°N. Considering EOFs of CCSM3 SLP north of 20°N, we find a maximum pattern correlation of 0.98 with EOF 1. In light of this strong correlation, we call L_{1}^{SLP} the AO mode. L_{2}^{SLP} also closely resembles the AO, with a maximum pattern correlation of 0.98 with EOF 1. However, L_{1}^{SLP} and L_{2}^{SLP} have distinct temporal patterns and are non-degenerate modes.

$L_{3}^{SLP \text{ (Fig. 7i)}}$ has a strong resemblance to the DA, which consists of opposite-signed SLP anomalies between the Eastern and Western Arctic. Following Wu et al. (2006), we define the dipole anomaly as the second leading EOF of winter (October-March) SLP north of 70°N. Let PC 2 be the PC associated with EOF 2. To determine the corresponding spatial pattern over the Arctic domain (north of 45°N), we project winter Arctic SLP onto PC 2, and compare the resulting spatial pattern to L_{3}^{SLP}. We find a maximum pattern correlation of 0.78, and lower correlations when other PCs are used. Another possible technique for determining the Arctic SLP signal of the DA, as performed in Wu et al. (2006), is to perform a conditional composite, based on the months in which PC 2 is active. This yields a very similar pattern correlation of 0.77 with L_{3}^{SLP}. Wu et al. (2006) also perform a conditional composite in which the influence of the AO is removed via linear regression. We also computed a spatial pattern using this technique and found a pattern correlation of 0.78 with L_{3}^{SLP}. Based on these findings, we refer to L_{3}^{SLP} as the DA mode.
L_{1}^{SLP} has associated annual and semiannual intermittent modes $\{I_{1}^{SLP}, I_{2}^{SLP}, I_{9}^{SLP}, I_{10}^{SLP}\}$.

L_{3}^{SLP} is associated with a pair of annual intermittent modes $\{I_{7}^{SLP}, I_{8}^{SLP}\}$, but not any semiannual intermittent modes.

b. Observational Modes

We compute the coupled NLSA observational modes using a locality parameter of $\epsilon = 1.20$ and a truncation level of $l = 21$ eigenfunctions. A primary difference between the observational modes and CCSM3 modes is the variables used for the eigenfunction computation. We find that computing SIC-SST-SLP eigenfunctions from the observational datasets yields temporal modes which are significantly noisier (more high-frequency power) than the corresponding modes from CCSM3. This corruption occurs due to the inclusion of the SLP data in the eigenfunction computation. We find that the eigenfunctions are substantially cleaner when computed using SIC and SST, and we use this as the base case for this study. On the other hand, the CCSM3 results are insensitive to the inclusion of SLP, with SIC-SST-SLP and SIC-SST eigenfunctions yielding very similar modes and conclusions regarding sea ice reemergence. We obtain SLP observational modes by projecting the SLP data onto the SIC-SST eigenfunctions and performing an SVD of the resulting operator.

The observational temporal modes have a similar character to those obtained from CCSM3. For each variable, we find periodic, low-frequency, and intermittent modes, and in many cases the low-frequency modes act as modulating envelopes for the intermittent modes. The temporal modes for SIC, SST, and SLP are shown in Figs. 1-3 of the supplementary material.

Next, we provide a brief description of the spatiotemporal modes that will be discussed later in the paper. Movies 3 and 4 of the supplementary material provide a more revealing spatiotemporal evolution of these modes and others. L_{1}^{SIC} (Fig. 7j) closely resembles the leading EOF of winter Arctic sea ice reported by Deser et al. (2000). In its positive phase, L_{1}^{SIC} has positive sea ice anomalies in the Labrador and Bering seas and negative anomalies
in the Greenland, Barents-Kara, and Okhotsk Seas. This mode has a maximum pattern
correlation of 0.88 with EOF 1 of Arctic sea ice from HADISST. \(L_1^{\text{SST}} \) (Fig. 7k) is most
similar to EOF 2 of Arctic SST, with a maximum pattern correlation of 0.70. In positive
phase, this mode has positive anomalies in the Labrador sea and subpolar gyre region,
negative anomalies in the Barents-Kara seas and positive anomalies in the Bering Sea. \(L_1^{\text{SLP}} \)
(Fig. 7l) strongly resembles the annular structure of the AO. Computing EOFs of ERA-
Interim SLP north of 20°N, we find a maximum pattern correlation of 0.97 with EOF 1, the
AO pattern. Similar to the CCSM3 results, the intermittent modes are generally associated
with a low-frequency mode, are active in the same parts of the domain as this low-frequency
mode, and display finer spatial structure.

One feature which is conspicuously absent from the observational SLP modes is a DA-
like mode. Other fields, such as 850mb geopotential height and surface winds, and smaller
domains were tested, but a low-frequency DA mode analogous to the CCSM3 results was
not found. Certain modes obtained were quite transient, and resembled the DA pattern at
certain snapshots in time, but not persistently.

5. Arctic sea ice reemergence in models and observations

Sea ice reemergence is a time-lagged correlation phenomenon. SIC anomalies decorrelate
over a 3-6 month timescale, however, at some time lag in the future, an increase in corre-
lation occurs. Sea ice reemergence is observed in two forms: a spring-fall reemergence, in
which spring anomalies are reproduced the following fall, and a fall-summer reemergence,
in which fall anomalies are reproduced the following summer. Both forms are observed in
CCSM3 model output and HADISST observations, with the spring-fall reemergence being
the significantly stronger signal in both cases.

We study sea ice reemergence via the time-lagged pattern correlation methodology of
Bushuk et al. (2014). For each month of the year, pattern correlations are computed between the SIC anomaly field of the given month and the SIC field at lags of 0 to 23 months into the future. This is done for all (month, month+lag) pairs in the time series, and we report the average of these values. Note that the pattern correlations are performed on anomalies from the seasonal cycle, are area-weighted, and are uncentered (global mean has not been subtracted from the anomaly field). This differs from the approach of Blanchard-Wrigglesworth et al. (2011), where the lagged correlations were performed using a time series of total sea ice area. Performing correlations using the full SIC field, as opposed to its total area, allows for inclusion of the spatial distribution of sea ice. The pattern correlation approach is able to detect opposite-signed anomaly features, such as sea ice dipoles, which would be integrated away in the total area approach. It also enforces a notion of locality, since anomalies must be spatially coincident in order to yield a significant pattern correlation. This ensures that a reported sea ice reemergence signal represents recurrent anomalies at the same spatial location.

In this paper, we focus on the regions defined in Fig. 1: a pan-Arctic domain (0° – 360° and 45°N – 90°N), the Barents and Kara Seas (30°E – 90°E and 65°N – 80°N), the Labrador Sea and Baffin Bay (70°W – 40°W and 45°N – 80°N), the Greenland Sea (40°W – 0°E and 55°N – 80°N), the Bering Sea (165°E – 160°W and 55°N – 65°N), and the Sea of Okhotsk (135°E – 165°E and 42°N – 65°N).

a. Regional sea ice reemergence in models and observations

We begin with a regional study of sea ice reemergence using raw SIC data from HADISST observations and CCSM3 output, the results of which are shown in Fig. 8. All correlations plotted in color are significant at the 95% level, based on a t-distribution statistic where the number of degrees of freedom is the number of spatial gridpoints in the given domain. All white boxes are not significant at the 95% level.

Over a pan-Arctic domain, in both the model and observations, we observe a clear “sum-
mer limb” of positive correlations corresponding to sea ice anomalies that originate in the
spring and reemerge in the fall (Fig. 8a,b). The “winter limb” of fall-summer reemergence
is not significant over the Arctic domain, except for a small hint of the limb in the CCSM3
data. Note that correlations are insignificant at all lags beyond 13 months. The pan-Arctic
lagged correlation structure is strikingly similar in the model and observations, however a
regional analysis reveals significant differences between the two.

Both CCSM3 and HADISST have strong summer limb signals in the Barents-Kara do-
main (Fig. 8g,h) and the Greenland Sea (Fig. 8k,l). The CCSM3 data also exhibits a winter
limb in the Barents-Kara domain, which is not significant in observations. A striking differ-
ence is found in the Labrador Sea, with a strong summer limb and a statistically significant
winter limb in observations, neither of which are found in the model (Fig. 8i,j). Conversely,
the strong summer limbs in the Bering and Okhostk seas found in the model data are ab-
sent in the observations (Fig. 8c,d,e,f). Note that the winter limb signal in the Bering and
Okhotsk seas should not be over-interpreted, as these domains are essentially sea ice free dur-
ing the summer and early fall. Therefore, the winter limb lagged correlations are performed
using an extremely low-variance signal, and are not robust.

b. Sea ice reemergence revealed via coupled NLSA

Given the unexpected lagged correlation structures in the CCSM3 and HADISST sea
ice datasets, we seek a low-dimensional representation of sea ice reemergence via the cou-
pled NLSA modes obtained in Section 4. We aim to answer two main questions: (1) can
the reemergence signal of the raw data be efficiently reproduced by low-dimensional fam-
ilies of modes? (2) can these mode families reveal possible mechanisms for Arctic sea ice
reemergence? To answer the former, we perform time-lagged pattern correlations using small
subsets of reconstructed spatiotemporal fields, \(\tilde{u}_n(t) \), from coupled NLSA. Our approach here
is to first construct families of SIC modes, and then to augment these families with SST and
SLP modes, based on correlations (Bushuk et al. 2014).
Based on the associations between low-frequency and intermittent modes identified in section 4a.1, we construct two families of SIC modes, each consisting of a low-frequency mode and annual and semiannual intermittent modes. These families, which we refer to as \mathcal{F}_1^M and \mathcal{F}_2^M, are able to qualitatively reproduce the reemergence signal of the raw data. They are given by $\mathcal{F}_1^M = \{L_1^{\text{SIC}}, I_1^{\text{SIC}}, I_2^{\text{SIC}}, I_3^{\text{SIC}}\}$ and $\mathcal{F}_2^M = \{L_2^{\text{SIC}}, I_3^{\text{SIC}}, I_4^{\text{SIC}}, I_5^{\text{SIC}}, I_6^{\text{SIC}}, I_7^{\text{SIC}}\}$. Here, the M superscript indicates that these families come from model output. Each family is particularly active in the Barents-Kara, Bering, and Labrador seas, but shares different phase relationships between the different regions. Within each family, the low-frequency and intermittent modes are closely related, in the sense that the low-frequency mode provides the modulating envelope for the intermittent modes. This means that all modes in a given family tend to be active or inactive at the same times.

In Fig. 9d, we show time-lagged pattern correlations computed over the Arctic domain using NLSA family \mathcal{F}_1^M. Comparing with the time-lagged pattern correlation structure of the raw data, shown in Fig. 9a, we observe qualitatively similar features. The \mathcal{F}_1^M correlations have a clear summer limb structure, with correlations that decay to near zero over the summer months and reemerge the following fall. They also have a slightly weaker winter limb, which may correspond to the weaker fall-summer reemergence seen in the raw data. The \mathcal{F}_1^M correlations are substantially higher than the raw data correlations because the family’s activity is primarily governed by L_1^{SIC}, which has a decorrelation time of 3 years.

This NLSA family has a qualitatively similar correlation structure to the raw data, yet it is natural to ask whether this family is capturing the portion of the signal responsible for the summer limb in the raw data. As a method for addressing this question, we compute time-lagged cross correlations between the raw data and the NLSA subspaces, shown in Fig. 9b and 9c. To explain panels b and c, we introduce $LC(A, B)$, a function that computes time-lagged pattern correlations, with the dataset B lagging A. Using this notation, Fig. 9a shows $LC(\text{Raw, Raw})$ and Fig. 9d shows $LC(\mathcal{F}_1^M, \mathcal{F}_1^M)$. In Fig. 9b and 9c, we plot $LC(\text{Raw, } \mathcal{F}_1^M)$.
and $LC(F^M_1, \text{Raw})$, respectively.

If the reemergence signal of F^M_1 is not representative of the signal in the raw data, one would expect these cross correlations to be small. However, we observe strong summer limbs in panels 9b and 9c, similar to the correlation structure of the raw data. The fact that these panels are similar to panel 9a, indicates that family F^M_1 is capturing the portion of the data responsible for the sea ice reemergence signal.

In Fig. 9e-h, we plot the same quantities as Fig. 9a-d, but for Family F^M_2. $LC(F^M_2, F^M_2)$ also has a strong summer limb and a weaker winter limb, but each of these limbs is weaker than their respective counterparts in $LC(F^M_1, F^M_1)$. Also, $LC(\text{Raw}, F^M_2)$ and $LC(F^M_2, \text{Raw})$, plotted in Fig. 9f and 9g, show a partial summer limb, but these correlations are weaker than the reemergence signal of the raw data. This indicates that family F^M_2 is capturing some of the reemergence signal, but not as significant a portion as family F^M_1.

2) HADISST REEMERGENCE FAMILIES

The observational modes also admit a mode family which is able to reproduce the reemergence signal of the raw HADISST data. This family is given by $F^O_1 = \{L_1^{\text{SIC}}, L_1^{\text{SIC}}, L_2^{\text{SIC}}, L_5^{\text{SIC}}, L_6^{\text{SIC}}\}$, where the O indicates observational data. There is no clear second family which has non-trivial cross-correlations with the raw observational data. In Fig. 10 we plot time-lagged cross correlations for F^O_1. $LC(F^O_1, F^O_1)$ has a clear summer limb and a weaker winter limb. We also find a strong summer limb structure in $LC(\text{Raw}, F^O_1)$ and $LC(F^O_1, \text{Raw})$, except for a small gap in the limb for anomalies beginning in July. This indicates that the family F^O_1 is capturing a substantial portion of the reemergence signal in the raw data.

3) SIC-SST-SLP REEMERGENCE FAMILIES

We have identified families of coupled NLSA SIC modes which are able to reproduce the reemergence signal of the raw SIC data. Next, we focus on the spatiotemporal evolution
of these families, and their associated SST and SLP patterns. As noted earlier, there are strong correlations between the PCs of SIC, SST, and SLP. We use this fact to augment the families F^M_1, F^M_2, and F^O_1 with associated SST and SLP modes.

The low-frequency mode of F^M_1 is L^{SIC}_1. Performing correlations between this mode and all low-frequency SST and SLP PCs, we find maximum correlations of -0.99 with L^{SST}_1 and -0.69 with L^{SLP}_3. Similarly, for the L^{SIC}_2 mode of F^M_2, we find maximum correlations of -0.93 with L^{SST}_2 and 0.64 with L^{SLP}_1. For the observational family, F^O_1, we find that L^{SIC}_1 has maximum correlations of 0.998 with L^{SST}_1 and -0.81 with L^{SLP}_1.

Each family consists of a low-frequency mode and associated annual and semiannual intermittent modes. In order to form the augmented families, we identify the intermittent modes associated with the low-frequency SST and SLP modes identified above. Based on the envelope correlations shown in Fig. 6, we define the following augmented families:

$$F^M_1 = \{L^{SIC}_1, I^{SIC}_{\{1,2,7,8\}}, L^{SST}_1, I^{SST}_{\{2,3,8,9\}}, L^{SLP}_3, I^{SLP}_{\{7,8\}}\},$$

$$F^M_2 = \{L^{SIC}_2, I^{SIC}_{\{3,4,9,10,11\}}, L^{SST}_2, I^{SST}_{\{5,6,11\}}, L^{SLP}_1, I^{SLP}_{\{1,2,9,10\}}\},$$

$$F^O_1 = \{L^{SIC}_1, I^{SIC}_{\{1,2,5,6\}}, L^{SST}_1, I^{SST}_{\{1,2,7,8\}}, L^{SLP}_1, I^{SLP}_{\{1\}}\}.$$

Here, the intermittent mode indices are given in braces for each variable.

c. SST-Sea ice reemergence mechanism

We now examine the sea ice reemergence mechanisms suggested by these SIC-SST-SLP families. Bushuk et al. (2014) showed that low-dimensional families of NLSA modes produce an SST-sea ice reemergence mechanism in the North Pacific sector which is consistent with that proposed by Blanchard-Wrigglesworth et al. (2011). Can a similar mechanism be observed in Arctic NLSA modes? In both the model and observations, the answer is yes.

Figure 11 shows spatial reconstructions of SIC, SST, and SLP using family F^M_1. These spatial patterns are composites, produced by averaging over all times where $L^{SIC}_1(t) > 1$. Similar patterns, with opposite sign, are obtained by compositing over times when $L^{SIC}_1(t)$
is in negative phase. This figure shows four months of the year, but the time evolution of \(\mathcal{F}_1^M \), shown in Movie 5 of the supplementary material, is more illuminating.

In the winter months of January-March, we observe strong negative sea ice anomalies in the Barents sea and strong positive anomalies in the Bering and Labrador seas. These anomalies reach their maximum southerly extent in March. We observe SST anomalies of opposite sign, which are roughly spatially coincident with the sea ice anomalies, but also extend further south in each of the three seas. Note that in March the Kara sea, the northern Bering sea and the northern Labrador sea are all SST anomaly-free. The ice anomalies move northward and weaken over the melt season, which begins in April. In June, the ice anomalies in the Barents-Kara region are located primarily in the Kara sea. Also, the Bering and Labrador anomalies have moved into the northern parts of these seas and weakened substantially. As the ice anomalies move northward, they imprint an anomaly of opposite sign in the SST field. In particular, the previously anomaly-free Kara and northern Bering and Labrador seas now have strong SST anomalies. The ice continues to retreat northwards over the melt season, reaching its minimum extent in September. In September the sea ice anomalies are extremely weak in the Barents-Kara, Bering, and Labrador Seas, yet each of these seas has retained an SST anomaly. The SST anomaly retained in the Barents-Kara and Bering Seas is particularly strong, with a weaker anomaly in the Labrador sea. As the growth season begins, the ice moves southward, interacts with the SST anomalies that have been stored over the summer months, and reinherits anomalies of the same sign as the previous spring. In December, we observe that most of the summer imprinted SST anomalies have disappeared, and the sea ice anomalies have reemerged with the same sign as the spring anomalies. This reemergence family is typically active for a 2-6 year period, over which we observe reemerging sea ice anomalies of a consistent sign (see Movie 5).

We observe a similar SST-sea ice reemergence mechanism in family \(\mathcal{F}_2^M \), shown in Fig. 12 and Movie 6 of the supplementary material. This figure is based on a composite over all times in which \(L_{2}^{SIC} > 1 \). This family exhibits strong winter sea ice anomalies in the Bering
and Labrador seas, which are out of phase with each other. These anomalies disappear over the melt season, leaving an SST imprint in the northern parts of these seas in June and September. We observe a sea ice reemergence during the growth season, as the SST anomalies are converted into ice anomalies. This family does not have a strong signal in the Barents-Kara seas.

The observational family, F^O, displays a clear sea ice reemergence, which is active primarily in the Barents-Kara, Bering, Okhotsk, Labrador, and Greenland seas (Movie 7). This family, shown for the year 1991 in Fig. 13, also displays the SST-sea ice reemergence mechanism, but in a slightly less clean manner than the model output. F^O has similar winter sea ice anomalies to F^M, with positive anomalies in the Bering and Labrador seas, and negative anomalies in the Barents-Kara seas, and also has additional negative anomalies in the Greenland and Okhotsk Seas. The family has winter SST anomalies of opposite sign to these sea ice anomalies, which extend southward of the sea ice anomalies. Comparing the March panels to the June and September panels, an SST imprinting can be observed in the Barents-Kara Sea and, to a lesser extent, the Labrador and Bering Seas. Sea ice anomalies of the same sign reappear in the fall, and this pattern roughly repeats the following year.

d. Sea ice teleconnections and reemergence via SLP anomalies

Movies 5-7 reveal consistent phase relationships between sea ice anomalies in the Barents-Kara, Bering, and Labrador Seas. The SST mechanism described above provides a local mechanism for sea ice reemergence, but does not explain this phase-locking between geographically disconnected seas. We find that the SLP patterns of F^M_1, F^M_2, and F^O (shown in the third column of Figs. 11, 12, and 13) provide plausible teleconnections between these different regions.

We begin with family F^M_1 (Fig. 11), which has an SLP pattern closely resembling the DA. This pattern is characterized by four main centers of action: pressure anomalies of the same sign over Greenland and Northwest North America and opposite-signed anomalies
over Western Russia and Eastern Siberia. The geostrophic winds associated with this SLP pattern are primarily meridional, blowing across the Arctic from the Bering to the Barents-Kara Seas, or vice versa. We find that the ice advection and surface air temperature advection associated with these large-scale winds is consistent with the observed phase relationships in regional sea ice anomalies.

From January-March, the dipole anomaly is very active, with strong northerly winds over the Bering sea and strong southerly winds over the Barents-Kara seas. The northerly winds advect cold Arctic air over the Bering sea and also push the ice edge southwards and advect additional ice into the sea. Each of these effects encourages the formation of a positive sea ice anomaly in the Bering Sea. Similarly, the Barents-Kara Seas experience warm southerly winds, which melt additional ice, and also push the ice edge northward, contributing to the observed negative sea ice anomaly. Also, the SLP anomaly centered over Greenland produces northerly geostrophic winds over the Labrador Sea, contributing to its positive sea ice anomalies for the same reasons. The SLP anomalies and corresponding winds weaken substantially over the summer months, as do the sea ice anomalies in each of these regions.

In October, the SLP anomalies begin to reappear with the same sign and a similar spatial pattern to the previous winter. This coincides with the beginning of the sea ice growth season and the reemergence of ice anomalies from the previous spring. In December, we observe a strong dipole SLP anomaly, and, again, observe sea ice anomalies in the Bering, Barents-Kara and Labrador seas, which are physically consistent with this pattern.

Besides explaining the observed teleconnection in sea ice anomalies, these SLP patterns also suggest an SLP-sea ice reemergence mechanism via their winter-to-winter persistence. This is consistent with the mechanism of Deser et al. (2002). I_3^{SLP}, the low-frequency SLP mode of J_1^M, has a strong one-year autocorrelation of 0.70. Because SLP anomalies produce a significant sea ice response, recurring SLP patterns will produce recurring sea ice patterns. Thus, the observed winter-to-winter SLP persistence provides a candidate mechanism for sea ice reemergence.
We also observe a similar relationship between the sea ice and SLP anomalies of family \mathcal{F}_2^M, which has an annular SLP pattern resembling the AO. Similar to \mathcal{F}_1^M, these SLP patterns are strongly active over the winter months (October-March), and fairly inactive over the summer months. The geostrophic winds of this pattern are primarily zonal, but also have a meridional component, which affects sea ice via surface air temperature advection. In January-March, there are northeasterly winds over the Bering sea, southeasterly winds over Labrador Sea, and northeasterly winds over the Barents-Kara seas, with corresponding positive, negative, and positive sea ice anomalies, respectively. The SLP anomalies become small over the summer months, and reappear during the fall months with the same sign as the previous winter. With the reappearance of these SLP anomalies, we observe an ice reemergence, which is particularly strong in the Bering and Labrador Seas.

The relationship between SLP and sea ice is somewhat less clear in the observations than in the model. Column three of Fig. 13 shows the \mathcal{F}_1^O SLP patterns for 1991, a year when the family was active. In January-March, there is an AO-like SLP pattern producing northerly winds over the Labrador sea and southerly winds over the Barents-Kara Seas. We observe corresponding positive and negative sea ice anomalies in these seas, analogous to what was observed in \mathcal{F}_2^M. However, the SLP patterns differ in the North Pacific. There is minimal advection over the Bering Sea, as a high-pressure anomaly is centered directly over it. This anomaly produces southerly winds over the Sea of Okhotsk, which are consistent with the negative sea ice anomaly. On the other hand, the SLP patterns do not provide a clear explanation, in terms of meridional wind, for the positive Bering sea ice anomalies. Compared to \mathcal{F}_2^M, these SLP patterns do not decorrelate as strongly over the summer months, and a negative SLP anomaly is retained over the pole, which also shifts onto the Eurasian continent over the summer months. The anomaly strengthens during the fall, producing similar winds and sea ice patterns to the previous winter. One notable difference between the observational and model SLP families is the spatial stationarity of the SLP patterns. The SLP patterns of \mathcal{F}_1^M and \mathcal{F}_2^M are relatively fixed in space and pulse on and off with the
annual cycle. The F_1^{10} SLP patterns also pulse with the annual cycle, yet are transient in space. The SLP centers-of-action advect substantially over the course of a year.

e. Metrics for sea ice reemergence

We now establish a set of reemergence metrics for sea ice, SST, and SLP, by which one can judge the activity of sea ice reemergence in different regions. These metrics, computed for the reconstructed fields of each family, quantify the intensity and sign of ice reemergence events. We focus on the values of these metrics in the Bering, Barents-Kara, and Labrador Seas. The sea ice metric is defined as the integrated (area-weighted) SIC anomaly in a given region. We define the SLP metric as the maximum value of the meridional wind over a given region. This is a proxy for the amount of warm/cold air advection and northward/southward ice advection over a given region. The SST metric is defined as the integrated (area-weighted) SST anomalies in the portion of the seas that are imprinted by summer SST anomalies. Specifically, we compute the integrated SST anomalies in the Kara sea (75°E – 100°E and 65°N – 80°N), the northern Bering sea (165°E – 160°W and 60°N – 65°N), and the northern Labrador sea (70°W – 40°W and 60°N – 80°N).

Figure 14 shows F_1^{11} metrics for 100 years of model output. We observe a number of reemergence events, characterized by periods in which the sea ice metric is large, with consistent sign, over a number of successive winters. The sea ice phase relationships for this family are striking, with strong positive correlation (0.95) between the Bering and the Labrador Seas and strong anti-correlation (-0.95) between the Bering and Barents-Kara seas. The SST metric reveals the SST-sea ice reemergence mechanism, as years with large ice metrics have large SST metrics of the opposite sign. During reemergence events, the SST metrics are close to zero in the winter months and grow large in the summer months as the sea ice anomalies imprint the SST field. These SST metrics also show a clear in-phase relationship between the Bering and Labrador Seas and out-of-phase relationship between the Bering and Barents-Kara Seas. The SLP metric is clearly out-of-phase with
the sea ice metric, which illustrates the sea ice-SLP reemergence mechanism, since positive (negative) meridional wind anomalies produce negative (positive) sea ice anomalies. During reemergence events, in the Bering and Labrador seas, we observe that the SLP metric is large over the winter and close to zero over the summer. In the Barents-Kara sea, we observe more persistence, as the family maintains its wind anomalies throughout an entire reemergence event.

Figure 15 shows the metrics for family F^2_M. Again, we observe very strong phase relationships in sea ice anomalies, with in-phase anomalies between the Barents-Kara and Bering Seas and out-of-phase anomalies between the Bering and Labrador Seas. The SST metric displays strong SST-sea ice reemergence mechanisms in the Labrador and Bering Seas. Also, as noted in section 5c, there is not a clear SST-sea ice mechanism in the Barents-Kara Sea. The SLP metric has a strong signal in the Labrador sea, which is large in winter and small in summer, and out-of-phase with the sea ice anomalies. The SLP-sea ice mechanism is less strong in the Barents-Kara and Bering Seas, yet we do observe persistent wind anomalies which are out-of-phase with the sea ice anomalies.

We show metrics for F^1_1 in Fig. 16. This family exhibits a strong SST-sea ice reemergence mechanism in the Barents-Kara sea. The SST signal is very weak in the Bering sea, and in the Labrador sea it tends to persist over periods of reemergence, rather than being imprinted each summer. The wind anomalies in the Labrador and Barents-Kara seas are consistent with the sea ice-SLP reemergence mechanism. As noted earlier, the Bering Sea wind anomalies are not consistent with the sea ice anomalies. Rather, we observe that the wind anomalies are inconsistent (in-phase) with the sea ice anomalies.

f. Regional sea ice relationships conditional on SLP modes

The reemergence families suggest a number of sea ice teleconnections which are related to large-scale SLP patterns. Are these regional teleconnections visible in the raw data? Are the teleconnections strengthened by conditioning on certain low-frequency SLP modes
being active? To answer these questions, we select pairs of regions and compute lagged
cross-correlations in total sea ice area anomalies between these regions. Note that the cross-
correlations are obtained by computing a time series of sea ice area anomalies for each region,
and performing lagged correlations between these two time series. Our choice of regions and
SLP modes is guided by the reemergence families. We consider the regions and SLP pattern
that display the strongest teleconnection for each family.

The results are shown in Fig. 17, for months of the year with sea ice coverage in the
marginal ice zones (December-May) and for lags of -23 to 23 months. Panels A and B show
lagged cross-correlations between the Barents-Kara and Bering seas for the raw CCSM3 data
and conditional on $|L_{3}^{\text{SLP}}| > 1.5$, respectively. This corresponds to the primary teleconnection
of F_{1}^{M}. All correlations plotted in color are significant at the 95% level, based on a t-
distribution statistic. In the raw data, we observe negative correlations between the Bering
and Barents-Kara seas, which are strongest at lags of -6 to 6 months. There is a dramatic
strengthening of these negative correlations when conditioned on an active L_{3}^{SLP} mode (the
DA mode). We also observe that the correlations are more persistent when the DA mode
is active. Another interesting feature is the clear bias in correlations towards lags in which
Bering anomalies lead Barents-Kara anomalies. The analogous correlations, corresponding
to family F_{2}^{M}, are shown in panels C and D for the Labrador and Bering Seas and for SLP
mode L_{1}^{SLP} (the AO mode). These correlations are very small compared with panels A and
B. The raw data displays very little correlation structure and weak correlations, that are
primarily negative, emerge after conditioning on the AO mode. It should be noted that the
limb of negative correlations, with Bering lagging Labrador, corresponds to summer sea ice
anomalies in the Bering sea, which are extremely weak. Therefore, this limb has questionable
significance.

Panels E and F show cross-correlations between the Barents-Kara and Labrador Seas for
the HADISST dataset, conditional on $|L_{1}^{\text{SLP}}| > 1$. Note that we use a value of 1 rather than
1.5 for the conditional correlations because of the shortness of the observational time series.
Also, the shortness of the time series implies a higher 95% significance level for correlations. We plot correlations using the same colorbar as CCSM3 and simply white-out all correlations which are not significant at the 95% level. The raw data displays some negative correlation, but a dramatic strengthening is observed when conditioning on an active AO mode. The limb of white in panel F, extending from (May, +3) to (Dec, +9) corresponds to lagged correlations with summer months. At lags beyond this limb, we observe strong negative correlations. This feature is a reemergence of anti-correlation between the Barents-Kara and Labrador seas. The reemergence structure is less clear for negative lags, where the Labrador leads the Barents-Kara, however we generally observe anti-correlation between the two seas, which is significantly stronger than the raw data.

6. Conclusions

We have studied Arctic sea ice reemergence (Blanchard-Wrigglesworth et al. 2011) in a comprehensive climate model and observations. This study has documented the regional details of sea ice reemergence and illustrated two potential reemergence mechanisms, involving SST and SLP persistence, respectively. We have used coupled NLSA (Giannakis and Majda 2013, 2012b; Bushuk et al. 2014), a nonlinear data analysis technique for multivariate timeseries, to analyze the co-variability of Arctic SIC, SST, and SLP. Coupled NLSA was applied to a 900-year equilibrated control integration of CCSM3, yielding spatiotemporal modes, analogous to EEOFs, and temporal patterns, analogous to PCs. Modes were also extracted from 34 years of observational data, using SIC and SST observations from HADISST and SLP reanalysis from ERA-Interim. In both the model and observations, these NLSA modes capture three distinct types of temporal behavior: periodic, low-frequency, and intermittent variability. The low-frequency modes have spatial patterns that closely resemble the leading EOFs of each variable. In particular, the low-frequency SLP modes correlate strongly with the well-known Arctic Oscillation (AO, Thompson and Wallace 1998) and
Performing time-lagged pattern correlations, we have found clear pan-Arctic sea ice reemergence signals in the model and observations. However, the regional details of these signals differ substantially, particularly in the Labrador Sea and the North Pacific sector. Using coupled NLSA modes, we have found low-dimensional families that are able to reproduce the reemergence signal of the raw SIC data. Moreover, the associated SST and SLP patterns of these families demonstrate two possible reemergence mechanisms, consistent with those proposed by Blanchard-Wrigglesworth et al. (2011) and Deser et al. (2002). The SST-sea ice reemergence mechanism, in which spring sea ice anomalies are imprinted and stored as summer SST anomalies, is clearly active in the Barents-Kara, Bering, and Labrador seas. The SLP-sea ice mechanism, in which sea ice anomalies reemerge due to the winter-to-winter persistence of SLP anomalies, is also observed in these regions, with the exception of the Bering sea in the observational record.

A key finding of this study is that these reemergence patterns are part of a pan-Arctic scale organization involving SLP teleconnection patterns. In particular, we have found strong phase relationships between sea ice reemergence events in geographically distinct regions. Unable to explain this teleconnection in terms of purely local SST anomalies, we find clear relationships between regional sea ice anomalies and large-scale SLP variability. In CCSM3, an out-of-phase relationship between the Bering/Labrador and Barents-Kara Seas is found to be consistent with the phase and amplitude of the DA mode. Similarly, an out-of-phase relationship between the Bering/Barents-Kara and Labrador Seas is found to be consistent with the phase and amplitude of the AO mode. In observations, the AO mode is able to explain the strong out-of-phase anomalies of the Barents-Kara and Labrador Seas, but cannot explain the weaker anomalies of the Bering sea. These regional phase relationships are weakly visible in the raw data, and are significantly strengthened by conditioning on an appropriate SLP mode (the AO or DA) being active.

In this study, we have demonstrated two plausible mechanisms for sea ice reemergence,
involving the atmosphere and the ocean, but which mechanism is most crucial in producing ice reemergence? Is sea ice reemergence a fully coupled phenomenon, or does it also occur in more idealized situations? This data analysis study has identified correlation, but not causation. An interesting subject for future work would be to perform a suite of coupled model experiments to study this question of causality.

Acknowledgments.

D. Giannakis and A.J. Majda wish to acknowledge support from ONR MURI grant 25-74200-F7112. The research of D. Giannakis is partially supported by ONR DRI grant N00014-14-1-0150. M. Bushuk is supported as a graduate student under this grant. M. Bushuk also received support from the Center for Prototype Climate Modeling at NYU Abu Dhabi Research Institute, and NSERC PGS-D award 404213.
REFERENCES

32

Screen, J. A., I. Simmonds, and K. Keay, 2011: Dramatic interannual changes of perennial

List of Figures

1 The regions of interest in this study: the Barents-Kara Seas (BK), the Labrador Sea (LS), the Greenland Sea (GS), the Bering Sea (BER), and the Sea of Okhotsk (OK). The Arctic domain is defined as all grid points North of 45°N.

2 Schematic summarizing the flow of data in the coupled NLSA algorithm.

3 Snapshots of the time series, power spectral density, and autocorrelation functions for the CCSM3 SIC PCs (v_k) from coupled NLSA. Shown here are the annual periodic (P_{1}^{SIC}) and semiannual periodic (P_{3}^{SIC}) modes, low-frequency modes (L_{1}^{SIC} and L_{2}^{SIC}), annual intermittent modes (I_{1}^{SIC} and I_{3}^{SIC}), and semiannual intermittent modes (I_{7}^{SIC} and I_{9}^{SIC}). The autocorrelation vertical scale is [-1,1]. The power spectral densities (f_k) were estimated via the multitaper method with time-bandwidth product $p = 6$ and $K = 2p - 1 = 11$ Slepian tapers. The effective half-bandwidth resolution for the s monthly samples is $\Delta \nu = p/(s\delta t) = 1/150 \ y^{-1}$, where $\delta t = 1/12 \ y$ is the sampling interval.

4 Snapshots of the time series, power spectral density, and autocorrelation functions for the CCSM3 SST PCs from coupled NLSA. Shown here are the annual periodic (P_{1}^{SST}) and semiannual periodic (P_{3}^{SST}) modes, low-frequency modes (L_{1}^{SST}, L_{2}^{SST}, and L_{3}^{SST}), annual intermittent modes (I_{1}^{SST} and I_{3}^{SST}), and semiannual intermittent modes (I_{7}^{SST}). The autocorrelation vertical scale is [-1,1].

5 Snapshots of the time series, power spectral density, and autocorrelation functions for the CCSM3 SLP PCs from coupled NLSA. Shown here are the annual periodic (P_{1}^{SLP}) and semiannual periodic (P_{3}^{SLP}) modes, low-frequency modes (L_{1}^{SLP}, L_{2}^{SLP}, L_{3}^{SLP}), and intermittent modes (I_{1}^{SLP}, I_{3}^{SLP}, I_{7}^{SLP}). The autocorrelation vertical scale is [-1,1].
Correlations between low-frequency modes and envelope functions for intermittent modes. Mode pairs with large positive correlations indicate that the low-frequency mode provides the modulating envelope for the intermittent mode.

Spatial patterns of selected sea ice, SST, and SLP NLSA modes. For each mode, we plot the spatial pattern with largest variance (of the q spatial patterns that make up the EEOF). Rows 1-3 show CCSM3 modes and row 4 shows observational modes, indicated by an O subscript. The fields have been normalized to have a maximum absolute value of 1.

Time lagged patterns correlations of Arctic sea ice in different regions. The left column shows results from CCSM3 model output, and the right column shows results from HADISST observations. All colored boxes are significant at the 95% level, based on a t-test.

Time lagged patterns correlations of sea ice computed over the Arctic domain, using NLSA Families \mathcal{F}_1^M and \mathcal{F}_2^M. Panels (A) and (D) show correlations of the raw data and \mathcal{F}_1^M, respectively. Panels (B) and (C) show cross-correlations of \mathcal{F}_1^M and the raw data, with the NLSA data lagging and leading, respectively. The same correlations for \mathcal{F}_2^M are shown in panels (E)-(H). All colored boxes are significant at the 95% level.

Time lagged patterns correlations of sea ice computed over the Arctic domain, using HADISST Family 1. Panels (A) and (D) show correlations of the raw data and NLSA Family \mathcal{F}_1^O, respectively. Panels (B) and (C) show cross-correlations of \mathcal{F}_1^O and the raw data, with the NLSA data lagging and leading, respectively. All colored boxes are significant at the 95% level.

Sea ice, SST, and SLP patterns of CCSM3 reemergence Family \mathcal{F}_1^M at different months of the year. These spatial patterns are composites, obtained by averaging over all years in which $L_1^\text{SIC} > 1$.
12 Sea ice, SST, and SLP patterns of CCSM3 reemergence Family F^M_2 at different months of the year. These spatial patterns are composites, obtained by averaging over all years in which $L_2^{SIC} > 1$.

13 Sea ice, SST, and SLP patterns of HADISST reemergence Family F^O_1 shown for different months of 1991.

14 Reemergence metrics for ice, SST and wind of family F^M_1 in the Barents/Kara, Bering, and Labrador Seas, by which we judge the activity of ice reemergence. Active periods of reemergence are characterized by repeated years in which these metrics are large (either positive or negative) during the winter months. Note that the SIC and SST metrics have been normalized by their respective standard deviations. The SLP metric is reported in m/s.

15 Reemergence metrics for ice, SST and wind of family F^M_2 in the Barents/Kara, Bering, and Labrador Seas, by which we judge the activity of ice reemergence. Active periods of reemergence are characterized by repeated years in which these metrics are large (either positive or negative) during the winter months.

16 Reemergence metrics for ice, SST and wind of family F^O_1 in the Barents/Kara, Bering, and Labrador Seas, by which we judge the activity of ice reemergence. Active periods of reemergence are characterized by repeated years in which these metrics are large (either positive or negative) during the winter months.

17 Lagged correlations in sea ice area anomalies between different seas. (A) and (B) show CCSM3 correlations between the Barents-Kara and Bering seas for the raw data and conditional on $|L^\text{SLP}_3| > 1.5$, respectively. (C) and (D) show CCSM3 correlations between the Bering and Labrador seas for the raw data and conditional on $|L^\text{SLP}_1| > 1.5$, respectively. (E) and (F) show HADISST correlations between the Barents-Kara and Labrador seas for the raw data and conditional on $|L^\text{SLP}_1| > 1$, respectively.
Fig. 1. The regions of interest in this study: the Barents-Kara Seas (BK), the Labrador Sea (LS), the Greenland Sea (GS), the Bering Sea (BER), and the Sea of Okhotsk (OK). The Arctic domain is defined as all grid points North of 45°N.
Fig. 2. Schematic summarizing the flow of data in the coupled NLSA algorithm.
Fig. 3. Snapshots of the time series, power spectral density, and autocorrelation functions for the CCSM3 SIC PCs (v_k) from coupled NLSA. Shown here are the annual periodic ($P_{1\text{SIC}}$) and semiannual periodic ($P_{3\text{SIC}}$) modes, low-frequency modes ($L_{1\text{SIC}}$ and $L_{2\text{SIC}}$), annual intermittent modes ($I_{1\text{SIC}}$ and $I_{3\text{SIC}}$), and semiannual intermittent modes ($I_{7\text{SIC}}$ and $I_{9\text{SIC}}$). The autocorrelation vertical scale is [-1,1]. The power spectral densities (f_k) were estimated via the multitaper method with time-bandwidth product $p = 6$ and $K = 2p - 1 = 11$ Slepian tapers. The effective half-bandwidth resolution for the s monthly samples is $\Delta \nu = p/(s\delta t) = 1/150 ~ y^{-1}$, where $\delta t= 1/12 ~ y$ is the sampling interval.
Fig. 4. Snapshots of the time series, power spectral density, and autocorrelation functions for the CCSM3 SST PCs from coupled NLSA. Shown here are the annual periodic (P_{SST}^1) and semiannual periodic (P_{SST}^3) modes, low-frequency modes (L_{SST}^1, L_{SST}^2, and L_{SST}^3), annual intermittent modes (I_{SST}^1 and I_{SST}^3), and semiannual intermittent modes (I_{SST}^7). The autocorrelation vertical scale is [-1,1].
Fig. 5. Snapshots of the time series, power spectral density, and autocorrelation functions for the CCSM3 SLP PCs from coupled NLSA. Shown here are the annual periodic (P$^\text{SLP}_1$) and semiannual periodic (P$^\text{SLP}_3$) modes, low-frequency modes (L$^\text{SLP}_1$, L$^\text{SLP}_2$, L$^\text{SLP}_3$), and intermittent modes (I$^\text{SLP}_1$, I$^\text{SLP}_3$, I$^\text{SLP}_7$). The autocorrelation vertical scale is [-1,1].
Fig. 6. Correlations between low-frequency modes and envelope functions for intermittent modes. Mode pairs with large positive correlations indicate that the low-frequency mode provides the modulating envelope for the intermittent mode.
Fig. 7. Spatial patterns of selected sea ice, SST, and SLP NLSA modes. For each mode, we plot the spatial pattern with largest variance (of the q spatial patterns that make up the EEOF). Rows 1-3 show CCSM3 modes and row 4 shows observational modes, indicated by an O subscript. The fields have been normalized to have a maximum absolute value of 1.
Fig. 8. Time lagged patterns correlations of Arctic sea ice in different regions. The left column shows results from CCSM3 model output, and the right column shows results from HADISST observations. All colored boxes are significant at the 95% level, based on a t-test.
Fig. 9. Time lagged patterns correlations of sea ice computed over the Arctic domain, using NLSA Families F_1^M and F_2^M. Panels (A) and (D) show correlations of the raw data and F_1^M, respectively. Panels (B) and (C) show cross-correlations of F_1^M and the raw data, with the NLSA data lagging and leading, respectively. The same correlations for F_2^M are shown in panels (E)-(H). All colored boxes are significant at the 95% level.
Fig. 10. Time lagged patterns correlations of sea ice computed over the Arctic domain, using HADISST Family 1. Panels (A) and (D) show correlations of the raw data and NLSA Family F1O, respectively. Panels (B) and (C) show cross-correlations of F1O and the raw data, with the NLSA data lagging and leading, respectively. All colored boxes are significant at the 95% level.
Fig. 11. Sea ice, SST, and SLP patterns of CCSM3 reemergence Family F_i^M at different months of the year. These spatial patterns are composites, obtained by averaging over all years in which $L_i^{SIC} > 1$.
Fig. 12. Sea ice, SST, and SLP patterns of CCSM3 reemergence Family F^M_3 at different months of the year. These spatial patterns are composites, obtained by averaging over all years in which $L^{SIC}_2 > 1$.
Fig. 13. Sea ice, SST, and SLP patterns of HADISST reemergence Family \mathcal{F}_1^O shown for different months of 1991.
Fig. 14. Reemergence metrics for ice, SST and wind of family F^M in the Barents/Kara, Bering, and Labrador Seas, by which we judge the activity of ice reemergence. Active periods of reemergence are characterized by repeated years in which these metrics are large (either positive or negative) during the winter months. Note that the SIC and SST metrics have been normalized by their respective standard deviations. The SLP metric is reported in m/s.
Fig. 15. Reemergence metrics for ice, SST and wind of family F^M_2 in the Barents/Kara, Bering, and Labrador Seas, by which we judge the activity of ice reemergence. Active periods of reemergence are characterized by repeated years in which these metrics are large (either positive or negative) during the winter months.
Fig. 16. Reemergence metrics for ice, SST and wind of family F^O_1 in the Barents/Kara, Bering, and Labrador Seas, by which we judge the activity of ice reemergence. Active periods of reemergence are characterized by repeated years in which these metrics are large (either positive or negative) during the winter months.
Fig. 17. Lagged correlations in sea ice area anomalies between different seas. (A) and (B) show CCSM3 correlations between the Barents-Kara and Bering seas for the raw data and conditional on $|L_3^{\text{SLP}}| > 1.5$, respectively. (C) and (D) show CCSM3 correlations between the Bering and Labrador seas for the raw data and conditional on $|L_1^{\text{SLP}}| > 1.5$, respectively. (E) and (F) show HADISST correlations between the Barents-Kara and Labrador seas for the raw data and conditional on $|L_1^{\text{SLP}}| > 1$, respectively.