
PDE, Spring 2020, HW6. Distributed Friday 5/1/2020, due by 9pm Friday 5/15/2020
(no extensions – I will distribute a solution sheet on that evening). Upload your solution
using the Assignments tool in NYU Classes; if possible, please provide a single pdf.

Correction 5/15: in Problem 3(c), in the two-part characterization of a viscosity solution, I
forgot the condition that φ(x0) = u(x0); equivalently, I could have written for the first bullet
that if u − φ has a local maximum at x0 then λu + H(∇φ) ≤ f at x0, and for the second
bullet that if u− φ has a local maximum at x0 then λu+H(∇φ) ≥ f at x0.

Correction 5/13: for Problem 1 one needs some condition on f to be sure f(u) ∈ L2. I have
fixed this by adding the condition f(0) = 0.

(1) In Lecture 12, we proved a local-in-time existence result for

utt −∆u = f(u) in Rn, with u = g and ut = h at t = 0,

provided g ∈ Hk and h ∈ Hk−1 with k > n/2, obtaining a solution in u ∈ L∞(0, T ;Hk)
with ut ∈ L∞(0, T ;Hk−1) for some T > 0. (Throughout this problem, I write Hk for
Hk(Rn). The proof relied on the fact that if f is Ck and f(0) = 0, and u ∈ Hk with
k > n/2, then f(u) ∈ Hk and there is an estimate of the form

‖f(u)‖Hk ≤ φ (‖u‖Hk)

where φ is a suitable continuous, nondecreasing function of its argument. Prove this
result. (Note: In Section 12.2.2 of Evans you’ll find a more general result, with part
of the proof given explicitly and the rest left as an exercise for which he gives a hint.
The arguments and guidance offered there are of course relevant here as well, though
the case stated here is perhaps a little simpler to write down.)

(2) We noted in Lecture 12 that for an equation of the form

utt −∆u = −|u|p−1u in Rn

with p > 1, a smooth enough solution (with sufficient decay at infinity to justify the
integration by parts

∫
Rn ∇u · ∇ut dx = −

∫
Rn ut∆u dx) has

d

dt

∫
Rn

1
2u

2
t + 1

2 |∇u|
2 + 1

p+1 |u|
p+1 dx = 0,

which gives uniform-in-time bounds for
∫
u2t dx,

∫
|∇u|2 dx, and

∫
|u|p+1 dx. Do these

bounds prevent u from blowing up in finite time? This question is more subtle than
it looks: Evans gives affirmative answers for n = 3, p < 5 and n = 3, p = 5 in Sections
12.3.3 and 12.4 respectively, but the arguments are fairly subtle. The case n = 3, p ≤ 3
is easier, as this problem shows.1

1To avoid technicalities, you may assume in doing this problem that u has compact support in space at
every time, and it is regular enough to permit the desired calculations. In practice, if the initial data for u
and ut have compact support then u(t) has compact support for all t since information propagates at finite
speed (we proved this in Lecture 12). If in addition u ∈ H2 and ut ∈ H1 initially, then since 2 > 3/2 and
f(u) = |u|p−1u is continuously differentiable at 0 for p > 1, the local-in-time existence theory we did in
Lecture 12 shows, in space dimension 3, existence and uniqueness of a solution u(t) ∈ H2 with ut ∈ H1 on a
maximal interval [0, T ∗], where either one of these norms blows up as t→ T ∗ or else T ∗ =∞. Alternatively,
the arguments for (b)–(d) can be replicated with v being a difference quotient rather than a derivative of u;
this gives the desired results in the limit ∆x→ 0.
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(a) Show that the L2 norm of u grows at most linearly in time.

(b) Let v = ∂u/∂xj for some j, and observe that vtt −∆v = −p|u|p−1v. Show that
E(t) =

∫
R3

1
2v

2
t + 1

2 |∇v|
2 dx satisfies

dE

dt
≤ p

(∫
v2t dx

)1/2(∫
|u|2(p−1)v2 dx

)1/2

(c) To handle the case p = 3, show that∫
|u|4v2 dx ≤ C

(∫
|∇u|2

)2(∫
|∇v|2

)
,

and conclude an estimate of the form E(t) ≤ c1ec2t, where c1 and c2 depend only
on the initial data for u and ut. Thus, u remains in H2 for all t. (Since 2 > 3/2,
this controls the L∞ norm of u.)

(d) Adjusting appropriately what you did for part (c), show that for 1 < p < 3, it is
still true that u remains in H2 for all t.

(3) Let u : Rn → R be defined by

u(x) = min
y(0)=x

∫ ∞
0

e−λt [h(dy/dt) + f(y(t))] dt, (1)

where f and h are given functions and λ > 0.

(a) Show (formally) that the associated Hamilton-Jacobi-Bellman equation is

λu+H(∇u) = f (2)

with2 H(p) = maxa{a · p− h(−a)}.
(b) If h and f are bounded and continuous, it’s clear that u is well-defined. Show

directly from the definition (1) that if f is Lipschitz continuous with constant
M (i.e. |f(x) − f(y)| ≤ M |x − y|) then u is Lipschitz continuous with constant
M/λ.

(c) Show that u is a viscosity solution of (2), in the sense that

• if u−φ has a local maximum at x0 and φ(x0) = u(x0), then λφ+H(∇φ) ≤ f
at x0, and

• if u−φ has a local minimum at x0 and φ(x0) = u(x0), then λφ+H(∇φ) ≥ f
at x0.

(Note: this is the stationary analogue of what we did at the end of Lecture 13.)

2To make contact with Lecture 13, notice that eikonal equation |∇u| = 1 in Ω with u = 0 at ∂Ω is
obtained by (i) taking h(a) equal to 0 for |a| ≤ 1 and h =∞ otherwise, (ii) taking f = 1 in Ω, f = 0 outside,
and (iii) setting λ = 0.
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(4) When solving HJ equations in bounded domains, not only the PDE but also the
boundary condition must be interpreted in an appropriate “viscosity” sense. This
problem explores why there is some subtlety to the boundary condition, by considering
(for a bounded domain Ω ⊂ R2),

u(x) = min
y(0)=x, |dy/dt|≤1

{∫ τ

0
f(y(t)) dt+ g(y(τ))

}
(3)

where τ is first time the path arrives at ∂Ω.

(a) Show that the HJB equation is (formally) |∇u| = f in Ω with u = g at ∂Ω.

(b) Clearly existence must fail when f = 1 but |dg/ds| > 1 somewhere on ∂Ω, where
dg/ds is the derivative of g with respect to arc length. Consider the example
Ω = [−1, 1]2, f = 1, and g(x, y) = 2(1− |y|). Determine (explicitly) the optimal
value u(x), by solving (directly) the minimization (3).
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