PDE, Spring 2020, HW5. Distributed Thursday 4/9/2020, due Friday 4/24/2020 (two
full weeks from distribution). Upload your solution using the Assignments tool in NYU
Classes; if possible, please provide a single pdf. Corrections and additions 4/19: I added
a hint for problem 1; in Problem 2, I added the hypotheses that f is C' and increasing; in
Problem 4(b), in the sentence starting “Your task is to show ...”, I corrected a typo in the
integral form of the PDE u; — Au = u3; in Problem 5, I corrected the characterization of
the Galerkin approximation by inserting the variable coefficient a(x) where it belongs; and
in Problem 6, I changed the PDE at the beginning of the problem to u; — Au = u3, since
that is what I had mind when writing the rest of the problem.

(1)

Let u solve uy — Au = f(u) in a bounded domain 2, with u = 0 at 9Q (and with
enough smoothness to apply the maximum principle). Suppose f(0) = 0, and let
m < 0 and M > 0 have the property that the interval [m, M] is invariant for the
ODE da/dt = f(a) (in the sense that if a(0) € [m, M] then a(t) € [m, M] for all
t > 0). Show that this interval is invariant for the PDE as well (in the sense that
if u(x,0) € [m, M] for all x then u(x,t) € [m, M] for all x and all ¢ > 0). [Hint: to
show that u > m, start by showing that ¢ = u — m satisfies a relation of the form
o — Ap + c(z,t)¢ > 0, for a suitable function c(z,t).]

In Lecture 10 we made repeated use of the following Lemma: Suppose a nonnegative
real-valued function a(t) satisfies a differential inequality da/dt < f(a(t)) with initial
condition a(0) = ag, and some C' function f that’s strictly positive and increasing
on [ag,00). Then a(t) < a(t) for all t > 0, where o solves the ODE do/dt = f(a(t))
with the same initial data a(t) = ag. Prove it.

This problem guides you through a semigroup-based proof that when f : R — R is
C' with f(0) = 0, the 1D nonlinear heat equation

Ut — Ugy = f(u) fort >0, with u = up(x) at t =0

has a unique local-in-time solution in C([0,T], H') for any ug € H'. (Here and
throughout this problem, I write H' for the space H'(R).)

(a) Show that when Au = u,, is the 1D Laplacian, ¢*” is a bounded linear map from
H' to itself, with operator norm at most 1 (in other words, ||e?®u|| g1 < ||u| g2).

(b) Show that if u € C([0,T], H') then

/t =92 f(u(s)) ds € C([0,T], HY).

0

(¢c) Now consider the iteration
t
() = ePug + / =B f(u"(s)) ds,
0

with u%(z) = 0. Show that if 7' > 0 is small enough the iteration converges in
c((o,T], H').



(d) Conclude that our initial value problem has a unique solution in C([0,T], H').

(Note: the strategy outlined here amounts to an application of the contraction map-
ping fixed point theorem. The overall outline of the argument should be familiar from
your study of ODE.)

I argued in Lecture 10 (using the scale-invariance of the equation) that for the initial-
value problem u; — Au = u? in R", a well-posedness result in LP(R") should need
p > n. This problem shows that there is indeed such a well-posedness result when
p>n.

(a) Let A be the Laplacian in R”. Show that if u € LP(R") then e/®u € LI(R™) for
t >0, and

leulln < C——lull
6D
where C' is independent of ¢ and w. (Note: this amounts to an estimate of
the operator norm ||e*®||r»_,zq.) [Hint: use the inequality from Real Variables:
1f % gllm < [fllLellgllze when 47 = & +1]

(b) Show that the strategy of Problem 3 applies also here, for initial data ug € LP(R™)
with p > n. (Your task is to show that for sufficiently small T' > 0, there
is a unique v € C([0,T], LP) such that u(t) = e®ug + fg et=9)23(s) ds for
0<t<T)

P q

Let us examine the accuracy of a specific Galerkin scheme for the initial-value problem
ur — V- (a(x)Vu) =0 in Q, with u = 0 at 9Q and u = up at t = 0.

We assume (2 is a bounded domain in R™ (with nice enough boundary), and take
as the Galerkin space Vi the span of the first N eigenfunctions of the constant-
coefficient Dirichlet Laplacian. (More carefully: let {¢;} be an orthonormal basis
for L? satisfying —A¢; = N\j¢; in  and ¢; = 0 at 99, ordered so that \; < Ajiq;
then Vj is the span of {d)j}é\[:l.) As a reminder: the Galerkin approximation uy is
characterized by the properties that uy(t) € Vi,

/(atuN)v dx + / (a(x)Vun,Vo)dr =0 for all v € Vi,
Q Q

and
un(0) = 7 (ug) = orthogonal projection of ug to Viy using the L? inner product.
(a) Show that wy = uy — 7n(u) satisfies an estimate of the form

d
dt/ |wN]2da:+Cl/ \wwdxgcz/ IV — Vo (w)[2 de,
Q Q Q

where C7 and Cs are positive constants.



(b) Show that any function u € H}(Q) N H?(Q) is well-approximated in H! by its
L? projection to Vi, in the sense that

/ \Vu — Vo (u)|? de < 1/ IVVul|? dz.
Q AN Jo

(c) When 99 is nice enough, it is known that Ay ~ CoN?/™. (This is known as
Weyl’s law. You can find a formula for Cq in Section 6.5 of Evans. A proof can
be found in volume 1 of Courant & Hilbert’s Methods of Mathematical Physics,
which is available online through Bobcat.) Also: for initial data up € H(2) N
H?(), the PDE solution u remains uniformly bounded for all time in this space.
(This is part of the basic existence theory; see e.g. Theorem 5 of Evans’ Section
7.1.) Using these facts together with (a) and (b), prove that

Jun () = ()]l 20y < ON /7

with a constant C' that’s independent of time.

(d) Now suppose u is smoother, specifically that [, | AFy|? dz is uniformly bounded
in time for some integer k > 2. Can you adjust the preceding arguments to get
a better estimate for [lun(t) — u(t)| 12(q) than the one stated in part (c)?

(6) Now let’s consider the analogue of Problem 5 for the semilinear heat equation
u — Au=u31in Q, with u = 0 at 0Q and v = ug at t = 0,

when Q is a bounded domain in R?® (with sufficiently nice boundary). We assume that

sup /|VVU|2dm§M (1)
0<t<T JQ

for some constant M. (This amounts to taking ug € H?($2) and assuming the solution
has not blown up by time 7".) As in Problem 5, we denote by uy the solution of the
Galerkin approximation obtained using the first N eigenfunctions of the Dirichlet
Laplacian; it is determined by the conditions that uy(t) € Vy for all ¢ and

/(8tuN)vd:c+/<VuN,Vv> dmz/u?’vvdw for all v € Vy,
Q Q Q

together with the initial condition

un(t) = 7 (up)

(as before, 7wy denotes orthogonal projection from L?(f2) to Vy using the L? inner
product).

(a) Let wy = uy — 7y (w). In Problem 5 we relied on an energy estimate involving
% Jo |wy|? dz, and this problem can be done that way too. However when I
sketched the local-in-time existence theory in Lecture 10, I relied mainly on an



(d)

energy estimate that involves % Jo |Vu|? dzx, so it is natural in this setting look
for a related estimate involving 4 [, [Vwy/|? dz. Show that in fact

d
/ |VwN|2dx+2/ ]AwN\2dx:—2/(u§’v—u3)Ade:c.
dt Jo Q Q

It is convenient to rewrite the integral on the RHS as

/ (s — [en(u)]) Awy dar + / (ren (W) — v Awy da = I + 1.
Q Q

Show that

1/2 1/6 1/3
I1<C (/ |AwN|2dx> (/ wl dx) </ lun|® + |7TN(’LL)|6d.’E> .
Q Q Q

As a start toward estimating the last of the three terms in this product, explain

why
1/3
(/ |7TN(u)]6da:> SC’/ |V7TN(U)\2dx§C/ |Vul|® de,
Q Q Q

and why in combination with (1) this gives
sup /’WN(’LL)|6,dSC < Ci1M.
0<t<T JQ

Since we expect to show that uy is close to 7wy (u), in light of part (b) it is natural
to expect that

sup /|uN6d:U§2C1M. (2)
0<t<T JQ

(Estimates proved using this assumption are valid up to the first time when
(2) fails. We'll see in part (d) that if N is large enough then it never fails for
t € [0,T].) Argue using (2) and part (b) that for any € > 0,

I<5/ |AwN\2d:n+CgvM/ ]VwN|2dm
0 0

and

IIS&/ |AwN|2dx+Ce,M/ |V (u) — Vu|® de.
Q Q

Conclude (by arguing as in Problem 5 and using that the spatial dimension is
n = 3) that

d
/ [Vwy|* < 02/ \Vwy|? dz + C3N~2/3,
dt Jo o
and show using this an estimate of the form
lu(t) = un ()f1 () < ON2?

up to the first time that (2) fails. (The constant C' can depend on M and T, but
is otherwise independent of w.)

Show finally that (2) holds for all ¢ € [0,T] if N is sufficiently large, so that
sup [[u(t) — un(®)| 0y < N2,
<I<T



