PDE, Spring 2020, HW5. Distributed Thursday 4/9/2020, due Friday 4/24/2020 (two full weeks from distribution). Upload your solution using the Assignments tool in NYU Classes; if possible, please provide a single pdf. Corrections and additions 4/19: I added a hint for problem 1; in Problem 2, I added the hypotheses that f is C^{1} and increasing; in Problem 4(b), in the sentence starting "Your task is to show...", I corrected a typo in the integral form of the PDE $u_{t}-\Delta u=u^{3}$; in Problem 5, I corrected the characterization of the Galerkin approximation by inserting the variable coefficient $a(x)$ where it belongs; and in Problem 6, I changed the PDE at the beginning of the problem to $u_{t}-\Delta u=u^{3}$, since that is what I had mind when writing the rest of the problem.
(1) Let u solve $u_{t}-\Delta u=f(u)$ in a bounded domain Ω, with $u=0$ at $\partial \Omega$ (and with enough smoothness to apply the maximum principle). Suppose $f(0)=0$, and let $m \leq 0$ and $M \geq 0$ have the property that the interval $[m, M]$ is invariant for the ODE $d a / d t=f(a)$ (in the sense that if $a(0) \in[m, M]$ then $a(t) \in[m, M]$ for all $t>0)$. Show that this interval is invariant for the PDE as well (in the sense that if $u(x, 0) \in[m, M]$ for all x then $u(x, t) \in[m, M]$ for all x and all $t>0)$. [Hint: to show that $u \geq m$, start by showing that $\phi=u-m$ satisfies a relation of the form $\phi_{t}-\Delta \phi+c(x, t) \phi \geq 0$, for a suitable function $c(x, t)$.]
(2) In Lecture 10 we made repeated use of the following Lemma: Suppose a nonnegative real-valued function $a(t)$ satisfies a differential inequality $d a / d t \leq f(a(t))$ with initial condition $a(0)=a_{0}$, and some C^{1} function f that's strictly positive and increasing on $\left[a_{0}, \infty\right)$. Then $a(t) \leq \alpha(t)$ for all $t>0$, where α solves the $O D E d \alpha / d t=f(\alpha(t))$ with the same initial data $\alpha(t)=a_{0}$. Prove it.
(3) This problem guides you through a semigroup-based proof that when $f: \mathbb{R} \rightarrow \mathbb{R}$ is C^{1} with $f(0)=0$, the 1 D nonlinear heat equation

$$
u_{t}-u_{x x}=f(u) \quad \text { for } t>0, \text { with } u=u_{0}(x) \text { at } t=0
$$

has a unique local-in-time solution in $C\left([0, T], H^{1}\right)$ for any $u_{0} \in H^{1}$. (Here and throughout this problem, I write H^{1} for the space $H^{1}(\mathbb{R})$.)
(a) Show that when $\Delta u=u_{x x}$ is the 1D Laplacian, $e^{t \Delta}$ is a bounded linear map from H^{1} to itself, with operator norm at most 1 (in other words, $\left\|e^{t \Delta} u\right\|_{H^{1}} \leq\|u\|_{H^{1}}$).
(b) Show that if $u \in C\left([0, T], H^{1}\right)$ then

$$
\int_{0}^{t} e^{(t-s) \Delta} f(u(s)) d s \in C\left([0, T], H^{1}\right)
$$

(c) Now consider the iteration

$$
u^{n+1}(t)=e^{t \Delta} u_{0}+\int_{0}^{t} e^{(t-s) \Delta} f\left(u^{n}(s)\right) d s
$$

with $u^{0}(x)=0$. Show that if $T>0$ is small enough the iteration converges in $C\left([0, T], H^{1}\right)$.
(d) Conclude that our initial value problem has a unique solution in $C\left([0, T], H^{1}\right)$.
(Note: the strategy outlined here amounts to an application of the contraction mapping fixed point theorem. The overall outline of the argument should be familiar from your study of ODE.)
(4) I argued in Lecture 10 (using the scale-invariance of the equation) that for the initialvalue problem $u_{t}-\Delta u=u^{3}$ in \mathbb{R}^{n}, a well-posedness result in $L^{p}\left(\mathbb{R}^{n}\right)$ should need $p>n$. This problem shows that there is indeed such a well-posedness result when $p>n$.
(a) Let Δ be the Laplacian in \mathbb{R}^{n}. Show that if $u \in L^{p}\left(\mathbb{R}^{n}\right)$ then $e^{t \Delta} u \in L^{q}\left(\mathbb{R}^{n}\right)$ for $t>0$, and

$$
\left\|e^{t \Delta} u\right\|_{L^{q}} \leq C \frac{1}{t^{\frac{n}{2}\left(\frac{1}{p}-\frac{1}{q}\right)}}\|u\|_{L^{p}}
$$

where C is independent of t and u. (Note: this amounts to an estimate of the operator norm $\left\|e^{t \Delta}\right\|_{L^{p} \rightarrow L^{q}}$.) [Hint: use the inequality from Real Variables: $\|f * g\|_{L^{m}} \leq\|f\|_{L^{k}}\|g\|_{L^{\ell}}$ when $\left.\frac{1}{k}+\frac{1}{\ell}=\frac{1}{m}+1.\right]$
(b) Show that the strategy of Problem 3 applies also here, for initial data $u_{0} \in L^{p}\left(\mathbb{R}^{n}\right)$ with $p>n$. (Your task is to show that for sufficiently small $T>0$, there is a unique $u \in C\left([0, T], L^{p}\right)$ such that $u(t)=e^{t \Delta} u_{0}+\int_{0}^{t} e^{(t-s) \Delta} u^{3}(s) d s$ for $0 \leq t \leq T$.)
(5) Let us examine the accuracy of a specific Galerkin scheme for the initial-value problem

$$
u_{t}-\nabla \cdot(a(x) \nabla u)=0 \text { in } \Omega, \text { with } u=0 \text { at } \partial \Omega \text { and } u=u_{0} \text { at } t=0
$$

We assume Ω is a bounded domain in \mathbb{R}^{n} (with nice enough boundary), and take as the Galerkin space V_{N} the span of the first N eigenfunctions of the constantcoefficient Dirichlet Laplacian. (More carefully: let $\left\{\phi_{j}\right\}$ be an orthonormal basis for L^{2} satisfying $-\Delta \phi_{j}=\lambda_{j} \phi_{j}$ in Ω and $\phi_{j}=0$ at $\partial \Omega$, ordered so that $\lambda_{j} \leq \lambda_{j+1}$; then V_{N} is the span of $\left\{\phi_{j}\right\}_{j=1}^{N}$.) As a reminder: the Galerkin approximation u_{N} is characterized by the properties that $u_{N}(t) \in V_{N}$,

$$
\int_{\Omega}\left(\partial_{t} u_{N}\right) v d x+\int_{\Omega}\left\langle a(x) \nabla u_{N}, \nabla v\right\rangle d x=0 \quad \text { for all } v \in V_{N}
$$

and

$$
u_{N}(0)=\pi_{N}\left(u_{0}\right)=\text { orthogonal projection of } u_{0} \text { to } V_{N} \text { using the } L^{2} \text { inner product. }
$$

(a) Show that $w_{N}=u_{N}-\pi_{N}(u)$ satisfies an estimate of the form

$$
\frac{d}{d t} \int_{\Omega}\left|w_{N}\right|^{2} d x+C_{1} \int_{\Omega}\left|w_{N}\right|^{2} d x \leq C_{2} \int_{\Omega}\left|\nabla u-\nabla \pi_{N}(u)\right|^{2} d x
$$

where C_{1} and C_{2} are positive constants.
(b) Show that any function $u \in H_{0}^{1}(\Omega) \cap H^{2}(\Omega)$ is well-approximated in H^{1} by its L^{2} projection to V_{N}, in the sense that

$$
\int_{\Omega}\left|\nabla u-\nabla \pi_{N}(u)\right|^{2} d x \leq \frac{1}{\lambda_{N}} \int_{\Omega}|\nabla \nabla u|^{2} d x
$$

(c) When $\partial \Omega$ is nice enough, it is known that $\lambda_{N} \sim C_{\Omega} N^{2 / n}$. (This is known as Weyl's law. You can find a formula for C_{Ω} in Section 6.5 of Evans. A proof can be found in volume 1 of Courant \& Hilbert's Methods of Mathematical Physics, which is available online through Bobcat.) Also: for initial data $u_{0} \in H_{0}^{1}(\Omega) \cap$ $H^{2}(\Omega)$, the PDE solution u remains uniformly bounded for all time in this space. (This is part of the basic existence theory; see e.g. Theorem 5 of Evans' Section 7.1.) Using these facts together with (a) and (b), prove that

$$
\left\|u_{N}(t)-u(t)\right\|_{L^{2}(\Omega)} \leq C N^{-1 / n}
$$

with a constant C that's independent of time.
(d) Now suppose u is smoother, specifically that $\int_{\Omega}\left|\Delta^{k} u\right|^{2} d x$ is uniformly bounded in time for some integer $k \geq 2$. Can you adjust the preceding arguments to get a better estimate for $\left\|u_{N}(t)-u(t)\right\|_{L^{2}(\Omega)}$ than the one stated in part (c)?
(6) Now let's consider the analogue of Problem 5 for the semilinear heat equation

$$
u_{t}-\Delta u=u^{3} \text { in } \Omega, \text { with } u=0 \text { at } \partial \Omega \text { and } u=u_{0} \text { at } t=0
$$

when Ω is a bounded domain in \mathbb{R}^{3} (with sufficiently nice boundary). We assume that

$$
\begin{equation*}
\sup _{0 \leq t \leq T} \int_{\Omega}|\nabla \nabla u|^{2} d x \leq M \tag{1}
\end{equation*}
$$

for some constant M. (This amounts to taking $u_{0} \in H^{2}(\Omega)$ and assuming the solution has not blown up by time T.) As in Problem 5, we denote by u_{N} the solution of the Galerkin approximation obtained using the first N eigenfunctions of the Dirichlet Laplacian; it is determined by the conditions that $u_{N}(t) \in V_{N}$ for all t and

$$
\int_{\Omega}\left(\partial_{t} u_{N}\right) v d x+\int_{\Omega}\left\langle\nabla u_{N}, \nabla v\right\rangle d x=\int_{\Omega} u_{N}^{3} v d x \quad \text { for all } v \in V_{N}
$$

together with the initial condition

$$
u_{N}(t)=\pi_{N}\left(u_{0}\right)
$$

(as before, π_{N} denotes orthogonal projection from $L^{2}(\Omega)$ to V_{N} using the L^{2} inner product).
(a) Let $w_{N}=u_{N}-\pi_{N}(u)$. In Problem 5 we relied on an energy estimate involving $\frac{d}{d t} \int_{\Omega}\left|w_{N}\right|^{2} d x$, and this problem can be done that way too. However when I sketched the local-in-time existence theory in Lecture 10, I relied mainly on an
energy estimate that involves $\frac{d}{d t} \int_{\Omega}|\nabla u|^{2} d x$, so it is natural in this setting look for a related estimate involving $\frac{d}{d t} \int_{\Omega}\left|\nabla w_{N}\right|^{2} d x$. Show that in fact

$$
\frac{d}{d t} \int_{\Omega}\left|\nabla w_{N}\right|^{2} d x+2 \int_{\Omega}\left|\Delta w_{N}\right|^{2} d x=-2 \int_{\Omega}\left(u_{N}^{3}-u^{3}\right) \Delta w_{N} d x
$$

It is convenient to rewrite the integral on the RHS as

$$
\int_{\Omega}\left(u_{N}^{3}-\left[\pi_{N}(u)\right]^{3}\right) \Delta w_{N} d x+\int_{\Omega}\left(\left[\pi_{N}(u)\right]^{3}-u^{3}\right) \Delta w_{N} d x=I+I I .
$$

(b) Show that

$$
I \leq C\left(\int_{\Omega}\left|\Delta w_{N}\right|^{2} d x\right)^{1 / 2}\left(\int_{\Omega} w_{N}^{6} d x\right)^{1 / 6}\left(\int_{\Omega}\left|u_{N}\right|^{6}+\left|\pi_{N}(u)\right|^{6} d x\right)^{1 / 3}
$$

As a start toward estimating the last of the three terms in this product, explain why

$$
\left(\int_{\Omega}\left|\pi_{N}(u)\right|^{6} d x\right)^{1 / 3} \leq C \int_{\Omega}\left|\nabla \pi_{N}(u)\right|^{2} d x \leq C \int_{\Omega}|\nabla u|^{2} d x
$$

and why in combination with (1) this gives

$$
\sup _{0 \leq t \leq T} \int_{\Omega}\left|\pi_{N}(u)\right|^{6}, d x \leq C_{1} M
$$

(c) Since we expect to show that u_{N} is close to $\pi_{N}(u)$, in light of part (b) it is natural to expect that

$$
\begin{equation*}
\sup _{0 \leq t \leq T} \int_{\Omega}\left|u_{N}\right|^{6} d x \leq 2 C_{1} M \tag{2}
\end{equation*}
$$

(Estimates proved using this assumption are valid up to the first time when (2) fails. We'll see in part (d) that if N is large enough then it never fails for $t \in[0, T]$.) Argue using (2) and part (b) that for any $\varepsilon>0$,

$$
I \leq \varepsilon \int_{\Omega}\left|\Delta w_{N}\right|^{2} d x+C_{\varepsilon, M} \int_{\Omega}\left|\nabla w_{N}\right|^{2} d x
$$

and

$$
I I \leq \varepsilon \int_{\Omega}\left|\Delta w_{N}\right|^{2} d x+C_{\varepsilon, M} \int_{\Omega}\left|\nabla \pi_{N}(u)-\nabla u\right|^{2} d x .
$$

Conclude (by arguing as in Problem 5 and using that the spatial dimension is $n=3$) that

$$
\frac{d}{d t} \int_{\Omega}\left|\nabla w_{N}\right|^{2} \leq C_{2} \int_{\Omega}\left|\nabla w_{N}\right|^{2} d x+C_{3} N^{-2 / 3}
$$

and show using this an estimate of the form

$$
\left\|u(t)-u_{N}(t)\right\|_{H_{0}^{1}(\Omega)}^{2} \leq C N^{-2 / 3}
$$

up to the first time that (2) fails. (The constant C can depend on M and T, but is otherwise independent of u.)
(d) Show finally that (2) holds for all $t \in[0, T]$ if N is sufficiently large, so that

$$
\sup _{0 \leq t \leq T}\left\|u(t)-u_{N}(t)\right\|_{H_{0}^{1}(\Omega)}^{2} \leq C N^{-2 / 3}
$$

