
PDE, Spring 2020, HW5. Distributed Thursday 4/9/2020, due Friday 4/24/2020 (two
full weeks from distribution). Upload your solution using the Assignments tool in NYU
Classes; if possible, please provide a single pdf. Corrections and additions 4/19: I added
a hint for problem 1; in Problem 2, I added the hypotheses that f is C1 and increasing; in
Problem 4(b), in the sentence starting “Your task is to show . . . ”, I corrected a typo in the
integral form of the PDE ut −∆u = u3; in Problem 5, I corrected the characterization of
the Galerkin approximation by inserting the variable coefficient a(x) where it belongs; and
in Problem 6, I changed the PDE at the beginning of the problem to ut − ∆u = u3, since
that is what I had mind when writing the rest of the problem.

(1) Let u solve ut − ∆u = f(u) in a bounded domain Ω, with u = 0 at ∂Ω (and with
enough smoothness to apply the maximum principle). Suppose f(0) = 0, and let
m ≤ 0 and M ≥ 0 have the property that the interval [m,M ] is invariant for the
ODE da/dt = f(a) (in the sense that if a(0) ∈ [m,M ] then a(t) ∈ [m,M ] for all
t > 0). Show that this interval is invariant for the PDE as well (in the sense that
if u(x, 0) ∈ [m,M ] for all x then u(x, t) ∈ [m,M ] for all x and all t > 0). [Hint: to
show that u ≥ m, start by showing that φ = u −m satisfies a relation of the form
φt −∆φ+ c(x, t)φ ≥ 0, for a suitable function c(x, t).]

(2) In Lecture 10 we made repeated use of the following Lemma: Suppose a nonnegative
real-valued function a(t) satisfies a differential inequality da/dt ≤ f(a(t)) with initial
condition a(0) = a0, and some C1 function f that’s strictly positive and increasing
on [a0,∞). Then a(t) ≤ α(t) for all t > 0, where α solves the ODE dα/dt = f(α(t))
with the same initial data α(t) = a0. Prove it.

(3) This problem guides you through a semigroup-based proof that when f : R → R is
C1 with f(0) = 0, the 1D nonlinear heat equation

ut − uxx = f(u) for t > 0, with u = u0(x) at t = 0

has a unique local-in-time solution in C([0, T ], H1) for any u0 ∈ H1. (Here and
throughout this problem, I write H1 for the space H1(R).)

(a) Show that when ∆u = uxx is the 1D Laplacian, et∆ is a bounded linear map from
H1 to itself, with operator norm at most 1 (in other words, ‖et∆u‖H1 ≤ ‖u‖H1).

(b) Show that if u ∈ C([0, T ], H1) then∫ t

0
e(t−s)∆f(u(s)) ds ∈ C([0, T ], H1).

(c) Now consider the iteration

un+1(t) = et∆u0 +

∫ t

0
e(t−s)∆f(un(s)) ds,

with u0(x) = 0. Show that if T > 0 is small enough the iteration converges in
C([0, T ], H1).
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(d) Conclude that our initial value problem has a unique solution in C([0, T ], H1).

(Note: the strategy outlined here amounts to an application of the contraction map-
ping fixed point theorem. The overall outline of the argument should be familiar from
your study of ODE.)

(4) I argued in Lecture 10 (using the scale-invariance of the equation) that for the initial-
value problem ut − ∆u = u3 in Rn, a well-posedness result in Lp(Rn) should need
p > n. This problem shows that there is indeed such a well-posedness result when
p > n.

(a) Let ∆ be the Laplacian in Rn. Show that if u ∈ Lp(Rn) then et∆u ∈ Lq(Rn) for
t > 0, and

‖et∆u‖Lq ≤ C 1

t
n
2

(
1
p
− 1

q

) ‖u‖Lp

where C is independent of t and u. (Note: this amounts to an estimate of
the operator norm ‖et∆‖Lp→Lq .) [Hint: use the inequality from Real Variables:
‖f ∗ g‖Lm ≤ ‖f‖Lk‖g‖L` when 1

k + 1
` = 1

m + 1.]

(b) Show that the strategy of Problem 3 applies also here, for initial data u0 ∈ Lp(Rn)
with p > n. (Your task is to show that for sufficiently small T > 0, there
is a unique u ∈ C([0, T ], Lp) such that u(t) = et∆u0 +

∫ t
0 e

(t−s)∆u3(s) ds for
0 ≤ t ≤ T .)

(5) Let us examine the accuracy of a specific Galerkin scheme for the initial-value problem

ut −∇ · (a(x)∇u) = 0 in Ω, with u = 0 at ∂Ω and u = u0 at t = 0.

We assume Ω is a bounded domain in Rn (with nice enough boundary), and take
as the Galerkin space VN the span of the first N eigenfunctions of the constant-
coefficient Dirichlet Laplacian. (More carefully: let {φj} be an orthonormal basis
for L2 satisfying −∆φj = λjφj in Ω and φj = 0 at ∂Ω, ordered so that λj ≤ λj+1;
then VN is the span of {φj}Nj=1.) As a reminder: the Galerkin approximation uN is
characterized by the properties that uN (t) ∈ VN ,∫

Ω
(∂tuN )v dx+

∫
Ω
〈a(x)∇uN ,∇v〉 dx = 0 for all v ∈ VN ,

and

uN (0) = πN (u0) = orthogonal projection of u0 to VN using the L2 inner product.

(a) Show that wN = uN − πN (u) satisfies an estimate of the form

d

dt

∫
Ω
|wN |2 dx+ C1

∫
Ω
|wN |2 dx ≤ C2

∫
Ω
|∇u−∇πN (u)|2 dx,

where C1 and C2 are positive constants.
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(b) Show that any function u ∈ H1
0 (Ω) ∩ H2(Ω) is well-approximated in H1 by its

L2 projection to VN , in the sense that∫
Ω
|∇u−∇πN (u)|2 dx ≤ 1

λN

∫
Ω
|∇∇u|2 dx.

(c) When ∂Ω is nice enough, it is known that λN ∼ CΩN
2/n. (This is known as

Weyl’s law. You can find a formula for CΩ in Section 6.5 of Evans. A proof can
be found in volume 1 of Courant & Hilbert’s Methods of Mathematical Physics,
which is available online through Bobcat.) Also: for initial data u0 ∈ H1

0 (Ω) ∩
H2(Ω), the PDE solution u remains uniformly bounded for all time in this space.
(This is part of the basic existence theory; see e.g. Theorem 5 of Evans’ Section
7.1.) Using these facts together with (a) and (b), prove that

‖uN (t)− u(t)‖L2(Ω) ≤ CN−1/n

with a constant C that’s independent of time.

(d) Now suppose u is smoother, specifically that
∫

Ω |∆
ku|2 dx is uniformly bounded

in time for some integer k ≥ 2. Can you adjust the preceding arguments to get
a better estimate for ‖uN (t)− u(t)‖L2(Ω) than the one stated in part (c)?

(6) Now let’s consider the analogue of Problem 5 for the semilinear heat equation

ut −∆u = u3 in Ω, with u = 0 at ∂Ω and u = u0 at t = 0,

when Ω is a bounded domain in R3 (with sufficiently nice boundary). We assume that

sup
0≤t≤T

∫
Ω
|∇∇u|2 dx ≤M (1)

for some constant M . (This amounts to taking u0 ∈ H2(Ω) and assuming the solution
has not blown up by time T .) As in Problem 5, we denote by uN the solution of the
Galerkin approximation obtained using the first N eigenfunctions of the Dirichlet
Laplacian; it is determined by the conditions that uN (t) ∈ VN for all t and∫

Ω
(∂tuN )v dx+

∫
Ω
〈∇uN ,∇v〉 dx =

∫
Ω
u3
Nv dx for all v ∈ VN ,

together with the initial condition

uN (t) = πN (u0)

(as before, πN denotes orthogonal projection from L2(Ω) to VN using the L2 inner
product).

(a) Let wN = uN − πN (u). In Problem 5 we relied on an energy estimate involving
d
dt

∫
Ω |wN |2 dx, and this problem can be done that way too. However when I

sketched the local-in-time existence theory in Lecture 10, I relied mainly on an
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energy estimate that involves d
dt

∫
Ω |∇u|

2 dx, so it is natural in this setting look

for a related estimate involving d
dt

∫
Ω |∇wN |2 dx. Show that in fact

d

dt

∫
Ω
|∇wN |2 dx+ 2

∫
Ω
|∆wN |2 dx = −2

∫
Ω

(u3
N − u3)∆wN dx.

It is convenient to rewrite the integral on the RHS as∫
Ω

(u3
N − [πN (u)]3)∆wN dx+

∫
Ω

([πN (u)]3 − u3)∆wN dx = I + II.

(b) Show that

I ≤ C
(∫

Ω
|∆wN |2 dx

)1/2(∫
Ω
w6
N dx

)1/6(∫
Ω
|uN |6 + |πN (u)|6 dx

)1/3

.

As a start toward estimating the last of the three terms in this product, explain
why (∫

Ω
|πN (u)|6 dx

)1/3

≤ C
∫

Ω
|∇πN (u)|2 dx ≤ C

∫
Ω
|∇u|2 dx,

and why in combination with (1) this gives

sup
0≤t≤T

∫
Ω
|πN (u)|6, dx ≤ C1M.

(c) Since we expect to show that uN is close to πN (u), in light of part (b) it is natural
to expect that

sup
0≤t≤T

∫
Ω
|uN |6 dx ≤ 2C1M. (2)

(Estimates proved using this assumption are valid up to the first time when
(2) fails. We’ll see in part (d) that if N is large enough then it never fails for
t ∈ [0, T ].) Argue using (2) and part (b) that for any ε > 0,

I ≤ ε
∫

Ω
|∆wN |2 dx+ Cε,M

∫
Ω
|∇wN |2 dx

and

II ≤ ε
∫

Ω
|∆wN |2 dx+ Cε,M

∫
Ω
|∇πN (u)−∇u|2 dx.

Conclude (by arguing as in Problem 5 and using that the spatial dimension is
n = 3) that

d

dt

∫
Ω
|∇wN |2 ≤ C2

∫
Ω
|∇wN |2 dx+ C3N

−2/3,

and show using this an estimate of the form

‖u(t)− uN (t)‖2H1
0 (Ω) ≤ CN

−2/3

up to the first time that (2) fails. (The constant C can depend on M and T , but
is otherwise independent of u.)

(d) Show finally that (2) holds for all t ∈ [0, T ] if N is sufficiently large, so that

sup
0≤t≤T

‖u(t)− uN (t)‖2H1
0 (Ω) ≤ CN

−2/3.
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