PDE, Spring 2020, HW4 - corrected 4/4. Distributed 3/24/2020, due $4 / 7 / 2020$. (Upload your solution using the Assignments tool in NYU Classes. If possible, please provide a single pdf.) Problem 1 was wrong in the initial version of this hw, so it has been corrected. Problem 2 was not significantly changed, but it now refers to part (c) of problem 1. In Problem 4, the original version asked for an estimate of the H^{2} norm of $D^{2} u$; in this corrected version the estimate involves the L^{2} norm of $D^{2} u$. Problem 5 originally had $L u=f$; in this corrected version the equation is $L u=0$. In Problem 7, the original version involved the pde $-\Delta u=b(\nabla u)$; in this corrected version the PDE is $-\Delta u+\mu u=b(\nabla u)$, with μ sufficiently large (the problem asks you to extend what I did in class to the same PDE with a nonzero Dirichlet boundary condition.)
(1) Regularity theory for a constant-coefficient elliptic operator in \mathbb{R}^{n} or in a half-space is much easier than the variable-coefficient case. Let's explore this:
(a) Show using a Fourier-based argument that for $f \in L^{2}\left(\mathbb{R}^{n}\right)$, there is a unique $u \in H^{2}\left(\mathbb{R}^{n}\right)$ satisfying $-\Delta u+u=f$, and it satisfies $\|u\|_{H^{2}} \leq C\|f\|_{L^{2}}$.
(b) Show that the analogous assertion for $-\Delta u=f$ is false, by giving an example of $f \in L^{2}(\mathbb{R})$ such that $-u_{x x}=f$ has no L^{2} solution.
(c) Suppose now that $u \in L^{2}\left(\mathbb{R}^{n}\right)$ and its distributional Laplacian $-\Delta u=f$ is in L^{2}. Show that $u \in H^{2}\left(\mathbb{R}^{n}\right)$ and $\|u\|_{H^{2}} \leq C\left(\|u\|_{L^{2}}+\|f\|_{L^{2}}\right)$, with a constant C that depends only on n.
(d) Now consider the halfspace $\mathbb{R}_{+}^{n}=\left\{x \in \mathbb{R}^{n}\right.$ such that $\left.x_{n}>0\right\}$. Use odd reflection and part (c) to show that if $u \in H_{0}^{1}\left(\mathbb{R}_{+}^{n}\right)$ and its distributional Laplacian $-\Delta u=$ f is in $L^{2}\left(\mathbb{R}_{+}^{n}\right)$ then $\|u\|_{H^{2}\left(\mathbb{R}_{+}^{n}\right)} \leq C\left(\|u\|_{L^{2}\left(\mathbb{R}_{+}^{n}\right)}+\|f\|_{L^{2}\left(\mathbb{R}_{+}^{n}\right)}\right)$.
(2) Continuing in the spirit of Problem 1, suppose u solves $-\Delta u=f$ in a domain Ω, and Ω^{\prime} is strictly smaller in the sense that its closure is contained in Ω. Let ϕ be a smooth, compactly supported function satisfying $\phi=1$ in Ω^{\prime} and $\phi=0$ near $\partial \Omega$, and consider $w=\phi u$.
(a) Find Δw.
(b) Use Problem 1(c) (combined with suitable inequalities) to show the interior regularity result $\|u\|_{H^{2}}\left(\Omega^{\prime}\right) \leq C\left(\|f\|_{L^{2}(\Omega)}+\|u\|_{L^{2}(\Omega)}\right)$.
(3) Our discussion of regularity used some lemmas about difference quotients. This problem asks for analogous results about second-differences. To capture the main idea with a minimum of notational complexity, let's work in one space dimension: the second-difference operator D_{h}^{2} of a function h is defined by

$$
D_{h}^{2} u(x)=\frac{u(x+h)+u(x-h)-2 u(x)}{h^{2}}
$$

(a) Suppose Ω is an open interval in \mathbb{R} and Ω^{\prime} is strictly smaller in the sense that its closure is contained in Ω. Show that if $u \in W^{2, p}\left(\Omega^{\prime}\right)$ for $1 \leq p<\infty$ then $\left\|D_{h}^{2} u\right\|_{L^{p}\left(\Omega^{\prime}\right)} \leq C\left\|u^{\prime \prime}\right\|_{L^{p}(\Omega}$ with C independent of h, provided h is small enough that $D_{h}^{2} u$ is well-defined in Ω^{\prime}.
(b) Now assume $1<p<\infty$, and suppose $u \in L^{p}(\Omega)$ has the property that $\left\|D_{h}^{2} u\right\|_{L^{p}(\Omega)} \leq C$ for all sufficiently small h (with C independent of h). Show that the second distributional derivative of u exists and is in L^{p}.
(c) Show, by giving a counterexample, that the assertion of (b) can be false when $p=1$.
(4) [This is problem 7 in Chapter 6 of Evans.] Let $u \in H^{1}\left(\mathbb{R}^{n}\right)$ have compact support and be a weak solution of the semilinear $\mathrm{PDE}-\Delta u+c(u)=f$ in all \mathbb{R}^{n}, where $f \in L^{2}$ and the function $c: \mathbb{R} \rightarrow \mathbb{R}$ is smooth with $c(0)=0$ and $c^{\prime} \geq 0$. Assume also that $c(u) \in L^{2}\left(\mathbb{R}^{n}\right)$. Show that

$$
\left\|D^{2} u\right\|_{L^{2}\left(\mathbb{R}^{n}\right)} \leq C\|f\|_{L^{2}\left(\mathbb{R}^{n}\right)}
$$

with a constant C that's independent of u and f. [Hint: argue as we did for interior regularity in the variable-coefficient linear setting, but without a cutoff function.]
(5) [This is problem 8 in Chapter 6 of Evans.] Let u be a smooth solution of $L u=$ $-\sum_{i, j} a_{i j}(x) D_{i j}^{2} u=0$ in Ω, where the coefficient is elliptic and has bounded derivatives.
(a) Show that $v=|D u|^{2}+\lambda u^{2}$ satisfies $L v \leq 0$ if λ is large enough.
(b) Deduce that $\|D u\|_{L^{\infty}(\Omega)} \leq C\left(\|D u\|_{L^{\infty}(\partial \Omega)}+\|u\|_{L^{\infty}(\partial \Omega)}\right)$.
(6) Let Ω be a bounded domain in \mathbb{R}^{n}, and let $b: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be smooth. Consider the nonlinear boundary value problem

$$
-\Delta u=b(\nabla u) \text { in } \Omega, \text { with } u=0 \text { at } \partial \Omega .
$$

Show that there can be at most one smooth solution. [Hint: if there are two solutions, subtract the two equations and use that $\left.b(\eta)-b(\xi)=\left(\int_{0}^{1} \nabla b[\xi+t(\eta-\xi)] d t\right) \cdot(\eta-\xi).\right]$
(7) In Lecture 8, I applied the Schauder fixed point theorem to prove existence of an H^{2} solution of $-\Delta u+\mu u=b(\nabla u)$ in a bounded domain Ω with $u=0$ at $\partial \Omega$, provided b is globally Lipschitz and μ is large enough. Now consider the same PDE with a nonzero Dirichlet boundary condition

$$
-\Delta u+\mu u=b(\nabla u) \text { in } \Omega, \text { with } u=g \text { at } \partial \Omega .
$$

Assume there is a harmonic function G with boundary value g and $|\nabla G|$ uniformly bounded. Show that this problem, too, has a solution if b is globally Lipschitz and μ is sufficiently large. [Hint: rewrite the PDE as an equation for $\tilde{u}=u-G$, and use a Schauder-based argument similar in spirit to what I did in Lecture 8.]

