
PDE, Spring 2020, HW4 – corrected 4/4. Distributed 3/24/2020, due 4/7/2020.
(Upload your solution using the Assignments tool in NYU Classes. If possible, please
provide a single pdf.) Problem 1 was wrong in the initial version of this hw, so it has been
corrected. Problem 2 was not significantly changed, but it now refers to part (c) of problem
1. In Problem 4, the original version asked for an estimate of the H2 norm of D2u; in
this corrected version the estimate involves the L2 norm of D2u. Problem 5 originally had
Lu = f ; in this corrected version the equation is Lu = 0. In Problem 7, the original version
involved the pde −∆u = b(∇u); in this corrected version the PDE is −∆u + µu = b(∇u),
with µ sufficiently large (the problem asks you to extend what I did in class to the same
PDE with a nonzero Dirichlet boundary condition.)

(1) Regularity theory for a constant-coefficient elliptic operator in Rn or in a half-space
is much easier than the variable-coefficient case. Let’s explore this:

(a) Show using a Fourier-based argument that for f ∈ L2(Rn), there is a unique
u ∈ H2(Rn) satisfying −∆u+ u = f , and it satisfies ‖u‖H2 ≤ C‖f‖L2 .

(b) Show that the analogous assertion for −∆u = f is false, by giving an example of
f ∈ L2(R) such that −uxx = f has no L2 solution.

(c) Suppose now that u ∈ L2(Rn) and its distributional Laplacian −∆u = f is in
L2. Show that u ∈ H2(Rn) and ‖u‖H2 ≤ C(‖u‖L2 + ‖f‖L2), with a constant C
that depends only on n.

(d) Now consider the halfspace Rn
+ = {x ∈ Rn such that xn > 0}. Use odd reflection

and part (c) to show that if u ∈ H1
0 (Rn

+) and its distributional Laplacian −∆u =
f is in L2(Rn

+) then ‖u‖H2(Rn
+) ≤ C(‖u‖L2(Rn

+) + ‖f‖L2(Rn
+)).

(2) Continuing in the spirit of Problem 1, suppose u solves −∆u = f in a domain Ω, and
Ω′ is strictly smaller in the sense that its closure is contained in Ω. Let φ be a smooth,
compactly supported function satisfying φ = 1 in Ω′ and φ = 0 near ∂Ω, and consider
w = φu.

(a) Find ∆w.

(b) Use Problem 1(c) (combined with suitable inequalities) to show the interior reg-
ularity result ‖u‖H2(Ω′) ≤ C(‖f‖L2(Ω) + ‖u‖L2(Ω)).

(3) Our discussion of regularity used some lemmas about difference quotients. This prob-
lem asks for analogous results about second-differences. To capture the main idea
with a minimum of notational complexity, let’s work in one space dimension: the
second-difference operator D2

h of a function h is defined by

D2
hu(x) =

u(x+ h) + u(x− h)− 2u(x)

h2
.

(a) Suppose Ω is an open interval in R and Ω′ is strictly smaller in the sense that
its closure is contained in Ω. Show that if u ∈ W 2,p(Ω′) for 1 ≤ p < ∞ then
‖D2

hu‖Lp(Ω′) ≤ C‖u′′‖Lp(Ω with C independent of h, provided h is small enough
that D2

hu is well-defined in Ω′.
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(b) Now assume 1 < p < ∞, and suppose u ∈ Lp(Ω) has the property that
‖D2

hu‖Lp(Ω) ≤ C for all sufficiently small h (with C independent of h). Show
that the second distributional derivative of u exists and is in Lp.

(c) Show, by giving a counterexample, that the assertion of (b) can be false when
p = 1.

(4) [This is problem 7 in Chapter 6 of Evans.] Let u ∈ H1(Rn) have compact support and
be a weak solution of the semilinear PDE −∆u + c(u) = f in all Rn, where f ∈ L2

and the function c : R → R is smooth with c(0) = 0 and c′ ≥ 0. Assume also that
c(u) ∈ L2(Rn). Show that

‖D2u‖L2(Rn) ≤ C‖f‖L2(Rn),

with a constant C that’s independent of u and f . [Hint: argue as we did for interior
regularity in the variable-coefficient linear setting, but without a cutoff function.]

(5) [This is problem 8 in Chapter 6 of Evans.] Let u be a smooth solution of Lu =
−
∑

i,j aij(x)D2
iju = 0 in Ω, where the coefficient is elliptic and has bounded deriva-

tives.

(a) Show that v = |Du|2 + λu2 satisfies Lv ≤ 0 if λ is large enough.

(b) Deduce that ‖Du‖L∞(Ω) ≤ C
(
‖Du‖L∞(∂Ω) + ‖u‖L∞(∂Ω)

)
.

(6) Let Ω be a bounded domain in Rn, and let b : Rn → R be smooth. Consider the
nonlinear boundary value problem

−∆u = b(∇u) in Ω, with u = 0 at ∂Ω.

Show that there can be at most one smooth solution. [Hint: if there are two solutions,

subtract the two equations and use that b(η)−b(ξ) =
(∫ 1

0 ∇b[ξ + t(η − ξ)] dt
)
·(η−ξ).]

(7) In Lecture 8, I applied the Schauder fixed point theorem to prove existence of an H2

solution of −∆u + µu = b(∇u) in a bounded domain Ω with u = 0 at ∂Ω, provided
b is globally Lipschitz and µ is large enough. Now consider the same PDE with a
nonzero Dirichlet boundary condition

−∆u+ µu = b(∇u) in Ω, with u = g at ∂Ω.

Assume there is a harmonic function G with boundary value g and |∇G| uniformly
bounded. Show that this problem, too, has a solution if b is globally Lipschitz and µ
is sufficiently large. [Hint: rewrite the PDE as an equation for ũ = u−G, and use a
Schauder-based argument similar in spirit to what I did in Lecture 8.]
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