PDE, Spring 2020, HW3. Distributed 3/3/2020, due in class 3/24/2020. [You have 3
weeks due to spring break].

(1)

Given a function ¢: R” — R, find a variational problem whose Euler-Lagrange equa-
tion equation is

—Au+Veo-Vu=f inQ
with u = 0 at 0.

Let © be a bounded domain in R", and let xy be a point in €. Is the variational
principle

1

bounded below, as u ranges over smooth functions? (Comment: while we usually
consider linear functionals of the form fQ uf dz, this one arises by taking f to be a
measure — namely f = d,,.) Warning: the answer is different for n =1 vs n > 2.

In some cases, the notion of a “local minimizer” depends on the choice of topology.
Consider the 1D variational problem

1
min / (u? —1)%dz
u(0)=a,u(1)=b Jq

with @ < b chosen so that |b—a| < 1 and W(£) = (€2 — 1) has W”(b—a) > 0.

(a) Show that the minimum value is 0 by displaying a minimizer. (A convincing
picture is sufficient.)

(b) Show that the affine function u.(z) = a + (b— a)z is a local minimizer in the C!
topology, in the sense that if v € C1(0,1) has v(0) = a, v(1) = b, and ||v — u |
sufficiently small, then fol W(vg),dx > fol W (usy) dz. (Hint: start by showing
that the function ¢t — fol W (tsg + (v — Usz)) do is convex.)

(¢) Show that u, is not a local minimizer in the L topology. (Again, a convincing
picture is sufficient.)

Our discussion of numerical approximation was limited to variational problems, how-
ever the same techniques can also be used for linear PDE’s that don’t come from
variational problems. They work whenever the Lax-Milgram lemma assures existence
of a unique solution. In fact, let H be a Hilbert space and let f: H — R be a con-
tinuous linear functional. Suppose B(u,v) is a bilinear (not necessarily symmetric)
functional on H x H such that

B(u,v)| < oflullglolm and Blu,u) > Bllull}

for some positive constants « and 8. The Lax-Milgram lemma gives the existence of
a unique u, such that
B(uy,v) = (f,v) forallve H.



To approximate u, numerically, it is natural to consider a finite-dimensional subspace
Hpy C H, and to seek uy € Hy such that

B(uyn,v) = (f,v) forallve Hy.
(a) Show that uy exists and is unique.

(b) Show that [Jus — un|m < §mineny lus — 0|

Problems (5)—(7) consider a variational problem of the form

uzr;lj{lag/g W(Vu) —uf dz (1)

where W: R"™ — R is convex with “pth-power growth” for some p > 1, in the sense that
Cr([€P = 1) < W(E) < Co([€P +1). (2)
(Recall that in Lecture 5, we applied the direct method of the calculus of variations to prove

existence of a minimizer.)

(5) The formal Euler-Lagrange equation for the variational problem (1) is
—div (DW(Vu)) = f.

Its weak form is the assertion that u € WP(Q) has u|sq = 0 and satisfies
/(DW(VU), V) — fode =0 (3)
Q

for any v € Wol’p(Q).
(a) Show that the integral in (3) makes sense if
[DW(§)] < C(lgf~t +1) (4)

for some constant C'.
(b) Show that if W is convex and satisfies (2) then it also satisfies (4).

(c) Show that if u € W1P(Q) solves (1) then it does indeed satisfy (3) for every v €
Wol P(Q). (Note: your task is to justify the formal calculation, which evaluates the
variational problem at u;(x) = u(x) + tv(z) for ¢t near 0 and takes the derivative
at t =0.)

(6) My proof of lower semicontinuity used the fact that if a subset S of W1P(Q) is closed
under strong convergence and convex then it is also closed under weak convergence.
The lower-semicontinuity of [, W (Vu)dz also has a more elementary proof, starting
from the fact that if W is convex with pth power growth for p > 1 then

/ W(Vu)dz =  sup /(Vu,n) —W*(n(x)) dex (5)
Q neL>(Q,R") JQ
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where W* is the Legendre transform of W, defined by

W*(n) = sup (§,n) — W(E).
€€Rn

(For a brief introduction to the Legendre transform, see Section 3.3 of Evans. I am
not asking you to prove the validity of (5), but you might want to think about that. I
wrote “sup” not “max” on purpose in (5), since if Vu is not in L then the optimal n
is typically also not in L*°.) OK, here is the question: Using (5), give a simple proof
that [, W(Vu) dz is lower-semicontinuous under weak convergence in W'?(Q).

My discussion of Galerkin-type numerical methods in Lecture 5 was limited to linear
problems (quadratic functionals). However one can do something very similar for (1),
provided that W (£) is uniformly convex in the sense that

Z PEDE, Oty > OleP (6)

for some C > 0.

(a) Show that under this hypothesis,

W(E) ~ Wn) > (VW)€ —n)+ 56— nl?

for any £,n € R™.

(b) Show that if u, minimizes ( ) and uy is any function in WP (Q2) with boundary
trace g, our functional E[u fQ (Vu) — uf dz satisfies

Elux] - Elu,] > g/ﬂ IV (uy — u)[? da.

(Note: if uy minimizes the functional in a finite-dimensional subspace and w, is
well-approximated by a function in the subspace, then the left hand side will be
small. Thus, this problem shows that minimization in a subspace is a good way
to solve a variational problem numerically.)



