
PDE, Spring 2020, HW3. Distributed 3/3/2020, due in class 3/24/2020. [You have 3
weeks due to spring break].

(1) Given a function φ : Rn → R, find a variational problem whose Euler-Lagrange equa-
tion equation is

−∆u+∇φ · ∇u = f in Ω

with u = 0 at ∂Ω.

(2) Let Ω be a bounded domain in Rn, and let x0 be a point in Ω. Is the variational
principle

inf
u=0 at ∂Ω

∫
Ω

1

2
|∇u|2 dx− u(x0)

bounded below, as u ranges over smooth functions? (Comment: while we usually
consider linear functionals of the form

∫
Ω uf dx, this one arises by taking f to be a

measure – namely f = δx0 .) Warning: the answer is different for n = 1 vs n ≥ 2.

(3) In some cases, the notion of a “local minimizer” depends on the choice of topology.
Consider the 1D variational problem

min
u(0)=a, u(1)=b

∫ 1

0
(u2
x − 1)2 dx

with a < b chosen so that |b− a| < 1 and W (ξ) = (ξ2 − 1)2 has W ′′(b− a) > 0.

(a) Show that the minimum value is 0 by displaying a minimizer. (A convincing
picture is sufficient.)

(b) Show that the affine function u∗(x) = a+ (b− a)x is a local minimizer in the C1

topology, in the sense that if v ∈ C1(0, 1) has v(0) = a, v(1) = b, and ‖v−u∗‖C1

sufficiently small, then
∫ 1

0 W (vx), dx ≥
∫ 1

0 W (u∗x) dx. (Hint: start by showing

that the function t 7→
∫ 1

0 W
(
u∗x + t(vx − u∗x)

)
dx is convex.)

(c) Show that u∗ is not a local minimizer in the L∞ topology. (Again, a convincing
picture is sufficient.)

(4) Our discussion of numerical approximation was limited to variational problems, how-
ever the same techniques can also be used for linear PDE’s that don’t come from
variational problems. They work whenever the Lax-Milgram lemma assures existence
of a unique solution. In fact, let H be a Hilbert space and let f : H → R be a con-
tinuous linear functional. Suppose B(u, v) is a bilinear (not necessarily symmetric)
functional on H ×H such that

|B(u, v)| ≤ α‖u‖H‖v‖H and B(u, u) ≥ β‖u‖2H

for some positive constants α and β. The Lax-Milgram lemma gives the existence of
a unique u∗ such that

B(u∗, v) = 〈f, v〉 for all v ∈ H.
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To approximate u∗ numerically, it is natural to consider a finite-dimensional subspace
HN ⊂ H, and to seek uN ∈ HN such that

B(uN , v) = 〈f, v〉 for all v ∈ HN .

(a) Show that uN exists and is unique.

(b) Show that ‖u∗ − uN‖H ≤ α
β minv∈HN

‖u∗ − v‖H

Problems (5)–(7) consider a variational problem of the form

min
u=g at ∂Ω

∫
Ω
W (∇u)− uf dx (1)

where W : Rn → R is convex with “pth-power growth” for some p > 1, in the sense that

C1(|ξ|p − 1) ≤W (ξ) ≤ C2(|ξ|p + 1). (2)

(Recall that in Lecture 5, we applied the direct method of the calculus of variations to prove
existence of a minimizer.)

(5) The formal Euler-Lagrange equation for the variational problem (1) is

−div (DW (∇u)) = f.

Its weak form is the assertion that u ∈W 1,p(Ω) has u|∂Ω = 0 and satisfies∫
Ω
〈DW (∇u),∇v〉 − fv dx = 0 (3)

for any v ∈W 1,p
0 (Ω).

(a) Show that the integral in (3) makes sense if

|DW (ξ)| ≤ C(|ξ|p−1 + 1) (4)

for some constant C.

(b) Show that if W is convex and satisfies (2) then it also satisfies (4).

(c) Show that if u ∈W 1,p(Ω) solves (1) then it does indeed satisfy (3) for every v ∈
W 1,p

0 (Ω). (Note: your task is to justify the formal calculation, which evaluates the
variational problem at ut(x) = u(x) + tv(x) for t near 0 and takes the derivative
at t = 0.)

(6) My proof of lower semicontinuity used the fact that if a subset S of W 1,p(Ω) is closed
under strong convergence and convex then it is also closed under weak convergence.
The lower-semicontinuity of

∫
ΩW (∇u) dx also has a more elementary proof, starting

from the fact that if W is convex with pth power growth for p > 1 then∫
Ω
W (∇u) dx = sup

η∈L∞(Ω,Rn)

∫
Ω
〈∇u, η〉 −W ∗(η(x)) dx (5)
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where W ∗ is the Legendre transform of W , defined by

W ∗(η) = sup
ξ∈Rn
〈ξ, η〉 −W (ξ).

(For a brief introduction to the Legendre transform, see Section 3.3 of Evans. I am
not asking you to prove the validity of (5), but you might want to think about that. I
wrote “sup” not “max” on purpose in (5), since if ∇u is not in L∞ then the optimal η
is typically also not in L∞.) OK, here is the question: Using (5), give a simple proof
that

∫
ΩW (∇u) dx is lower-semicontinuous under weak convergence in W 1,p(Ω).

(7) My discussion of Galerkin-type numerical methods in Lecture 5 was limited to linear
problems (quadratic functionals). However one can do something very similar for (1),
provided that W (ξ) is uniformly convex in the sense that

∑
i,j

∂2W

∂ξi∂ξj
ξiξj ≥ C|ξ|2 (6)

for some C > 0.

(a) Show that under this hypothesis,

W (ξ)−W (η) ≥ 〈∇W (η), ξ − η〉+
C

2
|ξ − η|2

for any ξ, η ∈ Rn.

(b) Show that if u∗ minimizes (1) and uN is any function in W 1,p(Ω) with boundary
trace g, our functional E[u] =

∫
ΩW (∇u)− uf dx satisfies

E[uN ]− E[u∗] ≥
C

2

∫
Ω
|∇(uN − u∗)|2 dx.

(Note: if uN minimizes the functional in a finite-dimensional subspace and u∗ is
well-approximated by a function in the subspace, then the left hand side will be
small. Thus, this problem shows that minimization in a subspace is a good way
to solve a variational problem numerically.)
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