PDE, Spring 2020, HW2. Distributed 2/18/2020, due in class 3/3/2020.
(1) Let Ω be a bounded domain (with nice enough boundary) in \mathbb{R}^{n}, and consider $1 \leq$ $p<n$. Recall that for $p^{*}=\frac{n p}{n-p}$ we have

$$
\|u\|_{L^{p^{*}}(\Omega)} \leq C\|u\|_{W^{1, p}(\Omega)} .
$$

Show that the inclusion of $W^{1, p}(\Omega)$ in $L^{p^{*}}(\Omega)$ is not compact.
(2) When we proved that the inclusion of $W^{1, p}(\Omega)$ in $L^{q}(\Omega)$ is compact for $q<p^{*}$, a key step was that when u has compact support and $u_{\varepsilon}=\eta_{\varepsilon} * u$ is its convolution with a standard mollifer, $\int\left|u-u_{\varepsilon}\right| d x \leq C \int|\nabla u| d x$ while $|u|$ and $|\nabla u|$ are controlled pointwise negative powers of ε times $\int|u| d x$.
In considering weak solutions of 2 nd-order linear elliptic pde, we used just the special case $p=2, q=2$, which tells us that the inclusion of $H^{1}(\Omega)$ in $L^{2}(\Omega)$ is compact. There is, of course, a Fourier approach to this result. In this setting, a convenient smooth approximation of a function u (with compact support, extended by 0 to all \mathbb{R}^{n}) is the function u_{R}, defined by

$$
\hat{u}_{R}(\xi)=\left\{\begin{array}{cl}
\hat{u}(\xi) & \text { for }|\xi|<R \\
0 & \text { for }|\xi| \geq R
\end{array}\right.
$$

Show that
(a) $\left\|u-u_{R}\right\|_{L^{2}} \leq \frac{C}{R}\|u\|_{H^{1}}$, and
(b) for any R, there is a constant $M(R)$ such that $\left\|u_{R}\right\|_{L^{\infty}}+\left\|\nabla u_{R}\right\|_{L^{\infty}} \leq M(R)\|u\|_{H^{1}}$.
[Given this, the proof of the compactness of the inclusion $H^{1}(\Omega) \subset L^{2}(\Omega)$ using u_{R} is entirely parallel to the proof using u_{ε}. I recommend thinking that through, but I'm not asking you to write it up.]
(3) If Ω is a (sufficiently regular, bounded) domain in \mathbb{R}^{n}, the inclusion of $H^{2}(\Omega)$ in $L^{2}(\Omega)$ is compact. (This can be proved using mollification, or using the approach of problem 2.) Using this, show the existence of a constant C (depending on Ω) such that

$$
\min _{p \in L} \int_{\Omega}|u-p|^{2} d x \leq C \int_{\Omega}|\nabla \nabla u|^{2} d x
$$

where $|\nabla \nabla u|^{2}=\sum_{i, j}\left(\partial^{2} u / \partial x_{i} \partial x_{j}\right)^{2}$ and L is the class of affine functions of x (equivalently: L is the finite-dimensional vector space of functions satisfying $\nabla \nabla u=0$).
(4) Let $\Omega=[-1,1] \times[0,1]$ and suppose $a\left(x_{1}, x_{2}\right)$ is piecewise constant:

$$
a\left(x_{1}, x_{2}\right)= \begin{cases}a_{1} & \text { if } x_{1}<0 \\ a_{2} & \text { if } x_{1}>0\end{cases}
$$

where a_{1} and a_{2} are both positive. Suppose u is smooth except at the line $x_{1}=0$ where $a(x)$ jumps, and u is a weak solution of

$$
-\operatorname{div}(a(x) \nabla u)+\frac{\partial u}{\partial x_{1}}=f
$$

in Ω. What jump or continuity conditions must hold for u and its normal derivative $\partial u / \partial x_{1}$ at $x_{1}=0$?
(5) If K is a self-adjoint compact operator on L^{2}, the Fredholm alternative tells us that $(I-K) u=f$ has a solution exactly when u is orthogonal to the nullspace of $(I-K)$. Show how this implies that for the $\mathrm{PDE}-\Delta u-\lambda u=f$ in a bounded domain Ω with the Dirichlet boundary condition $u=0$ at $\partial \Omega$,
(a) if λ^{-1} is not an eigenvalue of $\left(-\Delta_{D}\right)^{-1}$ (using the notation of my Lecture 3 notes), then the equation has a unique weak solution; and
(b) if λ^{-1} is an eigenvalue of $\left(-\Delta_{D}\right)^{-1}$, then a solution exists if and only if f is orthogonal (in $L^{2}(\Omega)$) to the nullspace of $\left(-\Delta_{D}\right)^{-1}-\lambda^{-1} I$.
(6) Let Ω be a bounded domain, and let Γ be a subset of $\partial \Omega$ with positive codimension-one measure. The existence of a constant C such that

$$
\int_{\Omega}|u|^{2} d x \leq C \int_{\Omega}|\nabla u|^{2} d x \quad \text { whenever }\left.u\right|_{\Gamma}=0
$$

can be proved by a compactness argument, but this gives no information about the constant C. Give a different argument (not by contradiction), based on the estimate $\int_{\Omega}|u-\bar{u}|^{2} d x \leq C_{1} \int_{\Omega}|\nabla u|^{2} d x$, which gives more explicit control over the value of C (given that you know C_{1}). (Hint: use the trace theorem, applied to $u-\bar{u}$.)
(7) Specialize our treatment of weak solutions to the case when the Hilbert space is $H^{2}(\Omega)$,

$$
B(u, v)=\int_{\Omega}\langle\nabla \nabla u, \nabla \nabla v\rangle d x
$$

and the linear functional is $L_{f}(v)=\int_{\Omega} f v d x$ for some $f \in L^{2}(\Omega)$.
(a) This leads, of course, to weak solutions of $\Delta^{2} u=f$. What are the boundary conditions?
(b) Are there consistency conditions on f ? Identify them, and show that you haven't missed any.
(c) Does the theory also work for a linear functional of the form $\tilde{L}_{f}(v)=\int_{\Omega} f\left(\partial v / \partial x_{1}\right) d x$, where $f \in L^{2}(\Omega)$?
(8) Consider Laplace's equation with a Robin boundary condition:

$$
-\Delta u=f \text { in } \Omega, \text { with } u+\frac{\partial u}{\partial n}=g \text { at } \partial \Omega .
$$

(a) How can our Hilbert-space-based theory of weak solutions be applied in this setting?
(b) What if the boundary condition is changed to $-u+\frac{\partial u}{\partial n}=g$? Can that problem also be handled by our methods?

