PDE, Spring 2020, HW1. Distributed 2/5/2020, due in class 2/18/2020.
As you'll probably recognize, many (though not all) these problems are from Evans' book.
(1) Let B be the unit ball in \mathbb{R}^{2}, and let $1 \leq p<\infty$ be fixed. Show that there is no continuous linear map $T: L^{p}(B) \rightarrow L^{p}(\partial B)$ such that $T(u)=\left.u\right|_{\partial B}$ when u is continuous on \bar{B}. (Briefly: it does not make sense to consider the "boundary trace" of a function in $L^{p}(B)$. Note: there is nothing special about balls, and nothing special about $\mathbb{R}^{2} ;$ I have asked the question in a special case simply to make the answer easy to write down.)
(2) As I mentioned in Lecture 1, the Neumann problem for Laplace's equation in a bounded domain

$$
\Delta u=0 \text { in } \Omega, \text { with } \partial u / \partial n=g \text { at } \partial \Omega
$$

cannot be solved by considering the variational problem

$$
\min _{\partial u / \partial n=g \text { at } \partial \Omega} \int_{\Omega}|\nabla u|^{2} d x \quad(\text { WRONG })
$$

To keep things simple, consider the special case when Ω is the interval $(0,1)$. What is the minimum value of this (wrong) variational problem? (This question is very closely related to problem 1: it reflects the fact that $u_{x}(0)$ and $u_{x}(1)$ are not well-defined, for functions $u \in H^{1}(0,1)$.)
(3) Suppose Ω is a connected domain in \mathbb{R}^{n}. Show that if $u \in W^{1, p}(\Omega)$ and $D u=0$ a.e. then u is constant a.e. (Note: nothing is assumed about the regularity of $\partial \Omega$.)
(4) Consider a function $u \in W^{1, p}(\Omega)$, where Ω is a bounded domain in R^{n} and $1 \leq p<\infty$.
(a) Show that $|u|$ is in $W^{1, p}(\Omega)$.
(b) Let u^{+}and u^{-}be the positive and negative parts of u (so $u=u^{+}-u^{-}$and $\left.|u|=u^{+}+u^{-}\right)$. Show that u^{+}and u^{-}are both in $W^{1, p}(\Omega)$ and

$$
\begin{gathered}
D u^{+}= \begin{cases}D u & \text { a.e. on }\{u>0\} \\
0 & \text { a.e. on }\{u \leq 0\}\end{cases} \\
D u^{-}=\left\{\begin{array}{cl}
0 & \text { a.e. on }\{u \geq 0\} \\
-D u & \text { a.e. on }\{u<0\} .
\end{array}\right.
\end{gathered}
$$

(Hint: $u^{+}=\lim _{\epsilon \rightarrow 0} F_{\epsilon}(u)$, where $F_{\epsilon}(z)=\left(z^{2}+\epsilon^{2}\right)^{1 / 2}-\epsilon$ for $z \geq 0$ and $F_{\epsilon}=0$ for $z<0$.)
(c) Show that $D u=0$ a.e. on the set where $u=0$.
(5) Suppose Ω is a bounded domain with C^{1} boundary, and let ξ be a C^{1} vector field defined on Ω such that $\xi \cdot n \geq 1$ on $\partial \Omega$.
(a) Assuming $1 \leq p<\infty$, apply the divergence theorem to $\int_{\partial \Omega}|u|^{p} \xi \cdot n d S$ to give another proof that when u is smooth,

$$
\int_{\partial \Omega}|u|^{p} d x \leq C \int_{\Omega}|D u|^{p}+|u|^{p} d x
$$

(Remember: our trace theorem - showing that $W^{1, p}$ functions have well-defined boundary traces in L^{p} of the boundary - followed immediately from this inequality, using the density of smooth functions in $W^{1, p}(\Omega)$.)
(b) Now suppose Ω is a polygon in \mathbb{R}^{2}. Its boundary is not C^{1}, but it is easy to see that there is nevertheless a C^{1} vector field with $\xi \cdot n \geq 1$ at $\partial \Omega$. Does your argument for part (a) still work in this case?
(6) I mentioned in class that for domains with nice enough boundaries, the boundary trace map from $W^{1, p}(\Omega)$ to $L^{p}(\partial \Omega)$ is surjective when $p=1$ but not when $p>1$. Let's confirm the latter statement for $p=2$, by proving a sharper estimate on the boundary trace map.
(a) Argue by scaling that we should expect an estimate of the form

$$
\left(\int_{\partial \Omega}|u|^{q} d x\right)^{1 / q} \leq C\|u\|_{W^{1,2}(\Omega)}
$$

when $q \leq 2(n-1) /(n-2)$ and $\Omega \subset \mathbb{R}^{n}$ with $n>2$.
(b) Show this statement is correct. (Hint: start by substituting $w=u^{q}$ into the known estimate $\int_{\partial \Omega}|w| d x \leq C\|w\|_{W^{1,1}(\Omega)}$.)
(7) Let g be a smooth function on the unit circle, and let its Fourier series be

$$
g(\theta)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos (n \theta)+\sum_{n=1}^{\infty} b_{n} \sin (n \theta) .
$$

(a) Show that the function

$$
u=a_{0}+\sum_{n=1}^{\infty} a_{n} r^{n} \cos (n \theta)+\sum_{n=1}^{\infty} b_{n} r^{n} \sin (n \theta) .
$$

is harmonic. (It is the unique harmonic function with boundary value g, but I'm not asking you to prove this.)
(b) Show that if B is the unit ball, then

$$
\int_{B}|\nabla u|^{2} d x=c \sum_{n=1}^{\infty} n\left(\left|a_{n}\right|^{2}+\left|b_{n}\right|^{2}\right)
$$

for some constant c (independent of g).
(c) Conclude that when B is the unit ball, the exact space of boundary traces of $H^{1}(B)$ functions is the closure of the smooth functions on the unit circle under the norm $H^{1 / 2}$ defined by

$$
\|g\|_{H^{1 / 2}}^{2}=a_{0}^{2}+\sum_{n=1}^{\infty} n\left(\left|a_{n}\right|^{2}+\left|b_{n}\right|^{2}\right) .
$$

(d) Check that the piecewise constant function

$$
g(\theta)= \begin{cases}1 & \text { for } 0<\theta<\pi \\ -1 & \text { for } \pi<\theta<2 \pi\end{cases}
$$

does not have bounded $H^{1 / 2}$ norm. (It has a perfectly good harmonic extension to the ball, given by the function u in part (a); however u does not have finite Dirichlet norm.)
(8) In $\mathbb{R}^{3}=\{(x, y, z)\}$, let L be the line $y=z=0$. Show that if $s>1$ then there is a well-defined restriction map $R: H^{s}\left(\mathbb{R}^{3}\right) \rightarrow H^{s-1}(L)$, determined by the property that $R u$ is the restriction of u to L when u is smooth.
(9) A special case of the Sobolev embedding theorem says that if Ω is a bounded domain in \mathbb{R}^{2} with a boundary nice enough for the extension lemma to hold, then

$$
\|u\|_{L^{p}(\Omega)} \leq C_{p}\|u\|_{W^{1,2}(\Omega)} \quad \text { for any } 1 \leq p<\infty .
$$

Give an example to show that this estimate can fail in a domain with a sharp enough cusp. (Hint: consider a cusp whose tip is $x=y=0$, and whose interior has the form $\left\{(x, y):|x|<y^{m}, y>0\right\}$, and a function that's equal to $y^{-\alpha}$ near the cusp.)

