
Take-Home Final Exam
PDE, Spring 2020

May 19, 2020

This exam will be available from the Assignments section of the NYU Classes site
starting 9am (NY time) on Tuesday, May 19, and it will also be distributed by email at
that time. It is intended to take just a couple of hours, but you may spend longer if you
wish. Your solutions must be uploaded to the Assignments section of the NYU Classes site
by 9am (NY time) on Wednesday, May 20.

This is an open-book, open-note exam: you may use my lecture notes and problem set
solutions, your own notes, our textbooks, other books, internet resources, etc. However
you may not consult with other people (classmates or friends or anyone else); this includes
communication by voice, email, or other means. Please wait until after the exam is over to
discuss it with your classmates and friends.

The exam has 8 questions, some with several parts. Each of the 8 questions is worth 10
points (although some may be easier or more time-consuming than others). The maximum
score is thus 80.

If you have questions about the exam, send email to kohn@cims.nyu.edu. I will check
my email at least every two hours during the period 9am – 9pm (NY time) on Tues May
19. Corrections or clarifications (if any) will be distributed by email.

(1) Let φ(x) be a smooth, radially symmetric function with compact support such that∫
φ(x) dx = 1. Reviewing standard notation: in space dimension n we define φε(x) =

ε−nφ(x/ε), and for any u ∈ L1(Rn) we write uε for the convolution φε ∗ u, in other
words uε(x) =

∫
Rn φε(x−y)u(y) dy. Show that if ∂u

∂xj
= f in the sense of distributions

with f ∈ L1 then ∂uε
∂xj

= fε.

(2) For each of the following examples, explain why the Lax-Milgram lemma assures the
existence of a unique u, and identify the boundary value problem it solves if you accept
that u is smooth. In each part, Ω is a bounded domain in Rn with smooth boundary.

(a) The function u ∈ H1(Ω) satisfies∫
Ω
〈∇u,∇v〉+ uv dx =

∫
∂Ω
fv dA for every v ∈ H1(Ω),

for some given smooth function f : ∂Ω → R. (In the boundary integral, dA
represents surface area.)

(b) The function u ∈ H1(Ω) has mean value 0 and satisfies∫
Ω
〈∇u,∇v〉 dx =

∫
Ω

∂v

∂x1
dx for every v ∈ H1(Ω).

(Hint toward identifying the PDE: the RHS can be written as a boundary inte-
gral.)
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(3) Let Ω be a bounded domain in Rn with smooth boundary, and let x0 be a point in Ω.
Consider the minimization

inf
u=0 at ∂Ω
u(x0)=1

∫
Ω
|∇u|2 dx

where u ranges over smooth functions.

(a) Show that for n ≥ 2 the minimum value is 0.

(b) Explain why n = 1 is different, and identify the minimum value when Ω = (−1, 1)
and x0 = 0.

(4) Let Ω be a bounded domain in Rn with smooth boundary, and let f : R → R be a
smooth function that’s nondecreasing (i.e. f ′ ≥ 0). Show that the boundary value
problem

−∆u+ f(u) = 0 in Ω, with u = φ at ∂Ω

can have at most one classical solution.

(5) Consider the three sketches below, labeled (i)–(iii).

(a) Which of the figures is consistent with u solving the boundary value problem
εuxx + ux = 1 for 0 < x < 1, with u(0) = u(1) = 0 and ε > 0? (You must briefly
justify your answer to get credit.)

(b) Which of the figures is consistent with u solving the boundary value problem
εuxx + ux = 1 for 0 < x < 1, with u(0) = u(1) = 0 and ε < 0? (Here too, you
must briefly justify your answer to get credit.)

(6) Consider the parabolic initial value problem

ut − uxx = uux for 0 < x < 1,

u = 0 at x = 0 and x = 1,

u(x, 0) = g(x) at t = 0.

(a) Show that if u is a classical solution then

d

dt

∫ 1

0
u2 dx+ 2

∫ 1

0
u2
x dx = 0.
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(b) Let v1, . . . , vN be smooth functions on (0, 1) that vanish at x = 0 and x = 1,
and that are orthogonal in the L2 norm (i.e.

∫ 1
0 vivj dx = 0 for i 6= j). Let V be

their span, and consider the Galerkin approximation uN (x, t) =
∑

j aj(t)vj(x)
characterized by∫ 1

0
uNt v + uNx vx dx =

∫ 1

0
uNuNx v dx for all v ∈ V and all t > 0

together with the initial condition that uN (x, 0) is the orthogonal projection of
g onto V using the L2 norm. Show that uN exists for all t.

(7) In HW5 we considered a semilinear heat equation in space dimension one. This prob-
lem asks how some parts of that calculation extend to space dimension n. Throughout
this problem, I write Hk for the space Hk(Rn).

(a) Show that in any space dimension n and for any nonnegative integer k, et∆ is a
bounded linear map from Hk to itself, with operator norm at most 1 (in other
words, ‖et∆u‖Hk ≤ ‖u‖Hk).

(b) Let f : R→ R be a smooth function with f(0) = 0. Show that if u ∈ C(0, T ;Hk)
with k > n/2 and

sup
0≤t≤T

‖u‖Hk ≤M,

then there is a constant C (depending only on k, n, f , and M) such that∥∥∥∥∫ t

0
e(t−s)∆f(u(s)) ds

∥∥∥∥
Hk

≤ Ct for any t, 0 ≤ t ≤ T .

(c) Now show that if u1 and u2 are both in C(0, T ;Hk) with k > n/2 and

sup
0≤t≤T

‖uj‖Hk ≤M for j = 1, 2,

then there is a constant C ′ (depending only on k, n, f , and M) such that∥∥∥∥∫ t

0
e(t−s)∆(f(u1(s))− f(u2(s))) ds

∥∥∥∥
L2

≤ C ′t sup
0≤t≤T

‖u1(s)− u2(s)‖L2

for any t, 0 ≤ t ≤ T .

(8) Recall that we say u is a viscosity solution of H(∇u) = 0 in a region Ω if

• whenever u− φ has a local max at x0 ∈ Ω with φ ∈ C2, H(∇φ(x0)) ≤ 0, and

• whenever u− φ has a local min at x0 ∈ Ω with φ ∈ C2, H(∇φ(x0)) ≥ 0.

(a) Show that a classical (C2) solution of H(∇u) = 0 is also a viscosity solution.

(b) Show that if u is a viscosity solution of H(∇u) = 0 and it is also C2, then u
solves H(∇u) in the classical (pointwise) sense.
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