PDE for Finance Notes — Section 7

Notes by Robert V. Kohn, Courant Institute of Mathematical Sciences. For use only in con-
nection with the NYU course PDE for Finance, MATH-GA 2706. The typed part of Section
7 dates from 2003, but the discussion of the Garleanu-Pedersen paper (in handwritten notes)
15 new wn 2015.

Discrete-time dynamic programming. This section achieves two goals at once. One
is to demonstrate the utility of discrete-time dynamic programming as a flexible tool for
decision-making in the presence of uncertainty. The second is to introduce some financially-
relevant applications. To achieve these goals Section 7 presents three examples: (1) optimal
control of execution costs (following a paper by D. Bertsimas and A. Lo, J Financial Mar-
kets 1, 1998, 1-50); (2) least-square replication of a European option (following a paper
by D. Bertsimas, L. Kogan, and A. Lo, Operations Research 49 (2001) 372-397; and (3)
optimization of risk vs return in a multiperiod model with transaction costs (following a
paper by N. Garleanu and L.H. Pedersen, J Finance 68, 2013, 2309-2340. (Examples 1 and
2 are typed text; the discussion of example 3 is in separate handwritten notes.)

First, some remarks by way of orientation. In the context of this course it was natural
to address continuous-time problems first, because we began the semester with stochastic
differential equations and their relation to PDE’s. Most courses on optimal control would
however discuss the discrete-time setting first, because it is in many ways easier and more
flexible. Indeed, continuous-time dynamic programming uses stochastic differential equa-
tions, Ito’s formula, and the HJB equation. Discrete-time dynamic programming on the
other hand uses little more than basic probability and the viewpoint of dynamic program-
ming. Of course many problems have both discrete and continuous-time versions, and it
is often enlightening to consider both (or compare the two). A general discussion of the
discrete-time setting, with many examples, can be found in Dimitri Bertsekas, Dynamic
Programming: Deterministic and Stochastic Models, Prentice-Hall, 1987, especially Chap-
ter 2. Our approach here is different: we shall explain the method by presenting a few
financially-relevant examples.

Example 1: Optimal control of execution costs. This example is taken from the
recent article: Dimitris Bertsimas and Andrew Lo, Optimal control of execution costs, J.
Financial Markets 1 (1998) 1-50 (available through the NYU library system, also easy to
find on Bertsimas’ website using Google Scholar).

The problem is this: an investor wants to buy a large amount of some specific stock. If
he buys it all at once he’ll drive the price up, thereby paying much more than necessary.
Better to buy part of the stock today, part tomorrow, part the day after tomorrow, etc.
until the full amount is in hand. But how best to break it up?

Here’s a primitive model. It’s easy to criticize (we’ll do this below), but it’s a good starting
point — and an especially transparent example of stochastic optimal control. Suppose the
investor wants to buy Siot shares of stock over a period of N days. His control variable is
S;, the number of shares bought on day i. Obviously we require S1 + ...+ Sy = Siot-

We need a model for the impact of the investor’s purchases on the market. Here’s where
this model is truly primitive: we suppose that the price P; the investor achieves on day i is
related to the price P;_; on day ¢ — 1 by

P, =P,_1+0S;+ oe; (1)
where e; is a Gaussian random variable with mean 0 and variance 1 (independent of \S; and
P;_1). Here 6 and o are fixed constants.

And we need a goal. Following Bertsimas and Lo we focus on minimizing the expected total
cost:

N
min F lz PiSi] .

=1

To set this up as a dynamic programming problem, we must identify the state. There is a
bit of art here: the principle of dynamic programming requires that we be prepared to start
the optimization at any day ¢ = N, N —1, N —2,... and when ¢ = 1 we get the problem at
hand. Not so hard here: the state on day 7 is described by the most recent price P;_1 and
the amount of stock yet to be purchased W; = Siot — 51 — ... — S;_1. The state equation
is easy: P; evolves as specified above, and W; evolves by

Wip1 = W; = 5;.

Dynamic programming finds the optimal control by starting at day N, and working back-
ward one day at a time. The relation that permits us to work backward is the one-time-step
version of the principle of dynamic programming. In this case it says:

Vi(Pio, W) = min £ [P;s 4 Vig1 (P, Wig1)]
Here V;(P,W) is the value function:

Vi(P,W) = optimal expected cost of purchasing W shares

starting on day i, if the most recent price was P.

(The subscript 7 plays the role of time.)

To find the solution, we begin by finding Vi (P, W). Since i = N the investor has no choice
but to buy the entire lot of W shares, and his price is Py = P 4+ W + ey, so his expected
cost is

VN(P,W) = E[(P+ W +cgey)W] = PW + 0W?2.

Next let’s find Viy_1(P, W). The dynamic programming principle gives
VN_1(P,W) = msinE [(P+0s+oen_1)s+ VN(P+0s+oen_1, W —s)]
= minF {(P +0s+oeny_1)s+ (P+0s+oeny_1)(W —s)+0(W — 5)2]
= min [(P+0s)s+ (P + 05)(W — s) + 0(W — 5)?]
= min [W(P +05) + 0(W — 5)?].

2

The optimal s is W/2, giving value
3
VN_1(P,W) = PW + Z9W2.

Thus: starting at day N — 1 (so there are only 2 trading days) the investor should split his
purchase in two equal parts, buying half the first day and half the second day. His impact
on the market costs him, on average, an extra %HWQ over the no-market-impact value PW.

Proceeding similarly for day N — 2 etc., a pattern quickly becomes clear: starting at day
N — i with the goal of purchasing W shares, if the most recent price was P, the optimal
trade on day i (the optimal s) is W/ (i + 1), and the expected cost of all W shares is
VN_i(PW)=WP+ —0W=.
N-ilBW) 20i + 1)
This can be proved by induction. The inductive step is very similar to our calculation of
Vn_1, and is left to the reader.

Notice the net effect of this calculation is extremely simple: no matter when he starts, the
investor should divide his total goal W into equal parts — as many as there are trading days
— and purchase one part each day. Taking i = N — 1 we get the answer to our original
question: if the most recent price is P and the goal is to buy Siot over N days, then this
optimal strategy leads to an expected total cost

0 1
Vi(P, Stot) = PSiot + 5(1 + N)Sgot'

There’s something unusual about this conclusion. The investor’s optimal strategy is not
influenced by the random fluctuations of the prices. It’s always the same, and can be fixed
in advance. That’s extremely unusual in stochastic control problems: the optimal control
can usually be chosen as a feedback control, i.e. a deterministic function of the state — but
since the state depends on the fluctuations, so does the control.

I warned you it was easy to criticize this model. Some comments:

1. The variance of the noise in the price model never entered our analysis. That’s because
our hypothetical investor is completely insensitive to risk — he cares only about the
expected result, not about its variance. No real investor is like this.

2. The price law (1) is certainly wrong: it has the ith trade S; increasing not just the ith
price P; but also every subsequent price. A better law would surely make the impact
of trading temporary. Bertismas and Lo consider one such law, for which the problem
still has a closed-form solution derived by methods similar to those used above.

The take-home message: Discrete-time stochastic dynamic programming is easy and fun. Of
course a closed-form solution isn’t always available. When there is no closed-form solution
one must work backward in time numerically. The hardest part of the whole thing is keeping
your indices straight, and remembering which information is known at time ¢, and which is
random.

sokokok stk ok sk ok ok ok sk skofokok sk kool sk ok ok ook

Example 2: Least-square replication of a European option. This discussion follows
the paper D. Bertsimas, L. Kogan, and A.W. Lo: Hedging derivative securities and incom-
plete markets: an e-arbitrage approach, Operations Research 49 (2001) 372-397. (Available
through the NYU library system, via JSTOR; also easy to locate on Andrew Lo’s website
using Google Scholar). The paper is quite rich; I focus for specificity on the simplest case,
when the returns at different times are independent trials from a single probability distri-
bution. However you’ll see as we go along that this hypothesis isn’t really being used; the
method is actually much more general. (I'll comment on its scope at the end.)

Here’s the problem. Consider a stock that can be traded only at discrete times jAt, and
suppose its price P; at the jth time satisfies

Py =Pj1(1+¢j-1) (2)

where ¢;_1 is chosen from a specified distribution, independent of j. (The discrete-time
analogue of standard lognormal dynamics is obtained by taking log(1+ ¢;) = pAt+ ov/Ate
where e is Gaussian with mean 0 and variance 1.) You are an investment banker, and at
time j = 0 you sell an option with maturity N and payout F(Py), receiving cash Vj in
payment. Your goal is to invest this cash wisely, trading in a self-financing way, so the value
at the final time comes as close as possible to replicating the payout F'(Py).

The state at time j is

V; = the value of your portfolio at time j, and

P; = the price at which trades can be made at time j.

We suppose that on each day, knowing V; and P; (but not the next day’s price Pji1)
you make a decision how to rebalance your portfolio, buying or selling at price P; till you
hold 6; units of stock and B; units of cash. Thus 6; is the control. Each trade must be
“self-financing.” To understand what this means, observe that going into the jth day your
portfolio is worth

0;—1P; + Bj_1

while after rebalancing it is worth
0;P; + B;.

For the trade to be self-financing these two expressions must be equal; this gives the re-
striction

Pj(0j — 0j-1) + (Bj — Bj—1) = 0.
Since the value of your portfolio on the jth day is

Vj = 0;P; + Bj,
the value changes from day to day by the law

Vi = Vier = 61(P = Pia).

4

We interpret the goal of replicating the payout “as well as possible” in a least-square sense:
your aim is to choose the 6;’s so as to

minimize E |(Vy — F(Py))?] .

This time it is fairly obvious how to fit the problem into the dynamic programming frame-
work. At time ¢ the value function is

JZ(V, P) = min EVZ-:V, P,=P [|VN - F(PN)|2} .

iy N—1

The final-time condition is
In(V,P) = |V — F(P)]?

since on day N there is no decision to be made. The principle of dynamic programming
gives
Ji(V, P) = min Ep,—p [Jit1(V + 6i(Pit1 — P,), Piy1)] -

7

Now a small miracle happens (this is the advantage of the least-square formulation): the
value function is, at each time, a quadratic polynomial in V, with coefficients which are
computable functions of P. In fact:

Claim: The value functions have the form
Ji(Vi,) = ai(Py)|[Vi = bi(P)* + ()
and the optimal control 6; is given by a feedback law that’s linear in V;:
0:(Vi, P5) = pi(Pi) — Vigi(F3).

The functions p;, ¢;, a;, b;, and ¢; are determined inductively by the following explicit for-
mulas:

Elait1(Piy1) - bit1(Pit1) - (Piy1 — P

pZ(PZ) E [ai+1(Pi+1) ' (Pi-‘rl - Pz)2]
. Elait1(Pit1) - (Piy1 — P)]
6(P:) = Elaiv1(Pit1) - (Pip1 — B)?]
a(P) = Blama(Piy)- [- a(P) (P - PP
bi(P) = ai(lPi)E [@i+1(Pig1) - [bit1(Pi1) — pi(B)(Pigr —)] - [1 = qi(B) (Pivr — B)]]

¢i(P) = Elcip1(Pip1)] —ai(P) - bi(P)* + E [ai+1(Pi+1) i1 (Pis1) — pi(F) (P — Pz‘)ﬂ

where all expectations are over the uncertainties associated with passage from time 7 to
i 4+ 1. These relations can be solved backward in time, starting from time N, using the
initialization

CLN(PN) = 1, bN<PN) = F(PN), CN(PN) = 0.

Play before work. Let’s explore the impact of the claim.

Main consequence: The price you charged for the option — Vi — never enters the analysis.
But of course it’s not irrelevant! If you charged V for the option and the day-0 price was
Py, then your expected replication error is Jo(Vo, Py) = ao(Po)|Vo — bo(FPo)|? + co(Py). The
first term is always positive, so the price that minimizes the replication error is Viy = bo(Pp).

Is Vi = bo(Pp) necessarily the market price of the option? Not so fast! This would be so — by
the usual absence-of-arbitrage argument — if ¢o(FPy) were zero, since in that case the payout
is exactly replicatable. However in general c¢o(FPp) is positive. (It is clearly nonnegative,
since the mean-square replication error is nonnegative no matter what the value of V4. It
is generally positive, due to market incompleteness: even the Black-Scholes marketplace is
not complete in the discrete-time setting.) If ¢y is small then the price of the option should
surely be close to by. However there is no logical reason why it should be exactly by. For
example, the sign of the replication error Viy — F'(Py) makes a great deal of difference to the
seller (and to buyer) of the option, but it did not enter our discussion. Moreover there is no
reason a specific investor should accept the quadratic replication error as the appropriate
measure of risk.

What about the Black-Scholes marketplace, where the classical Black-Scholes-Merton anal-
ysis tells us how to price and hedge an option? That analysis is correct, of course, but
it requires trading continuously in time. If you can trade only at discrete times jAt then
the market is no longer complete and options are not exactly replicatable. If you use the
optimal trading strategy determined in our Claim, your mean-square replication error will
be smaller than the value obtained by using the continuous-time Black-Scholes hedging
strategy (which sets §; = OV/OP evaluated at P = P; and t = jAt, where V solves the
Black-Scholes PDE). How much smaller? This isn’t quite clear, at least not to me. The
paper by Bertsimas-Kogan-Lo does show, however, that the discrete-time results converge
to those of the continuous-time analysis as At — 0.

OK, now work. We must justify the claim. Rather than do a formal induction, let us simply
explain the first step: why the formulas are correct when ¢ = N — 1. This has all the ideas
of the general case, and the notation is slightly simpler since in this case a;11 = ay = 1.
The principle of dynamic programming gives

In-1(VN-1,Pn-1) = min E UVN—l +On-1(Pn — Py-1) — F(PN)H :
N-1
Simplifying the notation, let us write the right hand side as
min £ IV +00P - FP], (3)

bearing in mind that 6P = Py — Py_1 and F' = F(Py) are random variables, and V' and
0 are deterministic constants.

Identification of the optimal 6 is essentially a task of linear algebra, since

(&m) = E[&n]

is an inner product on the vector space of random variables. We need to view the constant
function V' as a random variable; let us do this by writing it as V1 where V is scalar and
1 is the random variable which always takes the value 1. Then (3) can be written as

min [V1 4 65P — F|J?

where ||€]]? = (&,€) = E[¢%]. Decomposing 1 and F into the parts parallel and orthogonal
to 0 P, we have
1= (1-¢6P)+qSP with q= (1,6P)||6P| 2

and
F = (F—piP)+psP with p= (F,6P)||0P| 2,

and

V14 605P — F|?

V(1 —qdP) — (F — pdP) + (0 + Vg —p)dP|?
= |V(1—q6P) — (F —psP)||* + (0 + Vg — p)*|| 0P|

The optimal § makes the second term vanish: § = p — V¢, and the resulting value is
V2|1 — qdP||* — 2V (1 — ¢SP,F — pdP) + |F — psP|?

This is, as expected, a quadratic polynomial in V', which can be written in the form a(V —
b)2 + c. Expressing p, ¢, a, b and c in the original probabilistic notation gives precisely the
formulas of the Claim with ¢ = N — 1. The general inductive step is entirely similar.

Let’s close by discussing the scope of this method. The case considered above — returns that
are independent and identically distributed at each time step — is already of real interest. It
includes the time discretization of the standard Black-Scholes marketplace, but it is much
more general. For example, it can also be used to model a stock whose price process has
jumps (see Section 3.3 of Bertsimas-Kogan-Lo).

Moreover the framework is by no means restricted to the case of such simple price dynamics.
All one really needs is that (i) the price is determined by a Markov process, and (ii) the
payout at maturity depends on the final state of this process. Thus the same framework
can be used for problems as diverse as:

e An exotic option whose payout is the maximum stock price between times 0 and N.
Just replace the stock price process P; with the process (P, M;) = (price at time j,
max price through time j), defined by

Pj=Pja(l+¢j-1), Mj=max{Pj, M 1}
and replace the payout F(Py) by one of the form F(My).

e Stochastic volatility. Just replace the stock price process P; with a process (P}, 0;)
= (price at time j, volatility at time j), with the time-discretization of your favorite
stochastic-volatility model as the dynamics. The payout would, in this case, still have
the form F(Py).

sokokok stk ok sk ok ok ok sk skofokok sk kool sk ok ok ook

Example 3: Optimization of risk vs return in a multiperiod model with trans-
action costs. This example comes from a recent paper by N. Garleanu and L.H. Pedersen,
J Finance 68, 2013, 2309-2340 (available through the NYU Library system; also easy to
find on Lasse Pedersen’s website http://www.lhpedersen.com/home). The paper considers
a universe with finitely many stocks (so the issue is portfolio optimization). I'll discuss just
the special case where there is a single stock (so the issue is how much stock to hold at each
time step). See the accompanying handwritten notes (posted as Section 7, part 2).

