PDE for Finance Notes — Stochastic Calculus Review

Notes by Robert V. Kohn, Courant Institute of Mathematical Sciences. For use in connec-
tion with the NYU course PDE for Finance, G63.2706. Prepared in 2003, minor adjust-
ments made 2011.

These notes provide a quick review of basic stochastic calculus. If this material isn’t familiar
then you don’t have sufficient background for the class PDE for Finance.

The material presented here is covered in the books by Neftci (An Introduction to the Math-
ematics of Financial Derivatives), or Chang (Stochastic Optimization in Continuous Time).
Deeper treatments can be found for example in Shreve (Stochastic Calculus for Finance II),
Steele (Stochastic Calculus and Financial Applications), and Oksendal (Stochastic Differ-
ential Equations: an Introduction with Applications).

Brownian motion. Brownian motion w(t) is the stochastic process with the following
properties:

e For s < t the increment w(t) — w(s) is Gaussian with mean zero and variance
E[(w(t) —w(s))?] =t — s. Moreover the increments associated with disjoint intervals
are independent.

e Its sample paths are continuous, i.e. the function t — w(t) is (almost surely) contin-
uous.

e It starts at 0, in other words w(0) = 0.

This process is unique (up to a suitable notion of equivalence). One “construction” of
Brownian motion obtains it as the limit of discrete-time random walks; students of finance
who have considered the continuous-time limit of a binomial lattice have seen something
very similar.

The sample paths of Brownian motion, though continuous, are non-differentiable. Here is
an argument that proves a little less but captures the main point. Given any interval (a,b),
divide it into subintervals by a = t; < ty... <ty = b. Clearly
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As N — oo, the left hand side has expected value b—a (independent of N). The first term on
the right tends to zero (almost surely) by continuity. So the second term on the right must
tend to infinity (almost surely). Thus the sample paths of w have unbounded total variation
on any interval. One can show, in fact, that |w(t) —w(s)| is of order /[t — s|loglog 1/t — s]|
as |t —s| — 0.

It’s easy to construct, for any constant ¢ > 0, a process whose increments are mean-
value-zero, independent, and variance 02|t — s|: just use cw(t). The vector-valued ver-
sion of this construction is more interesting. We say w(t) = (wq,...,w,) is an R"-
valued Brownian motion if its components are independent scalar Brownian motions. Thus



El(w(t) — w(s))i(w(t) — w(s));] equals 0 if i # j and |t — s| if ¢ = j. Given such
w, we can obtain a process with correlated increments by taking linear combinations,
i.e. by considering z(t) = Aw(t) where A is a (constant) matrix. Its covariance is
E[(2(t) — 2(5))i(2(t) — 2(s));] = (AAT);|t — s|. If the desired variance o is a function
of state and time (deterministic, or random but nonanticipating) then construction of the
associated process requires solving the stochastic differential equation dx = odw (to be
discussed below). That’s the scalar case; the vector-valued situation is similar: to construct
a process with independent, mean-value-zero increments with specified covariance % we
have only to set A = /3 (the unique nonnegative, symmetric square root of ) and solve
dr = Adw.

Filtrations and conditional expectations. It is important, in discussing stochastic
processes, to remember that at time ¢ one knows (with certainty) only the past and the
present, not the future. This is important for understanding the term “martingale.” It will
also be crucial later in the class when we discuss optimal decision-making.

The meaningful statements about a Brownian motion (or any stochastic process, for that
matter) are statements about its values at various times. Here is an example of a statement:
“—3 <w(.5) < —2 and w(1.4) > 3”. Here is another: “maxg<¢<; |w(t)| < 3”. A statement
is either true or false for a given sample path; it has a certain probability of being true. We
denote by F; the set of all statements about w that involve only the values of w up to time
t. Obviously Fs; C F; if s < t. These F;’s are called the filtration associated with w.

We can also consider functions of a Brownian path. When we take the expected value of
some expression involving Brownian motion we are doing this. Here are some examples of
functions: flw] = w(.5) — w(1)?; glw] = maxp<;<1 |w(t)|. Notice that both these exam-
ples are determined entirely by time-1 information (jargon: f and g are Fj-measureable).
It’s often important to discuss the expected value of some uncertain quantity given the
information available at time t. For example, we may wish to know the expected value of
maxo<¢<1 [w(t)| given knowledge of w only up to time .5. This is a conditional expectation,
sometimes written Ei[g] = F[g|F:] (in this case ¢ would be .5). We shall define it in a
moment via orthogonal projection. This definition is easy but not so intuitive. After giving
it, we’ll explain why the definition captures the desired intuition.

Let V' be the vector space of all functions g[w], endowed with the inner product (f,g) =
E[fg]. Tt has subspaces

V; = space of functions whose values are determined by time-t information.
The conditional expectation is defined by orthogonal projection:
E,[g] = orthogonal projection of g onto V;.

The standard linear-algebra definition of orthogonal projection characterizes FEi|g] as the
unique element of V; such that

(Eilgl, f) = (g, f) for all f € V.



Rewriting this in terms of expectations: E[g] is the unique function in V; such that
E[Et[g]f] = Elgf] for all f € V.

All the key properties of conditional expectation follow easily from this definition. Example:

“tower property”
s <t = Es[Ei[f]] = Es[f]

since projecting first to V; then to Vy; C V4 is the same as projecting directly to Vi. Another
fact: Ey is the ordinary expectation operator E. Indeed, V} is one-dimensional (its elements
are functions of a single point w(0) = 0, i.e. it consists of those functions that aren’t random
at all). From the definition of orthogonal projection we have

Eylg] € Vb and E [Eylg]f] = E[gf] for all f € V.

But when f is in Vj it is deterministic, so Elgf] = fE[g]. Similarly E [Ey[g]f] = fEo[g]-
Thus Eylg] = Elg].

To see that this matches our intuition, i.e. that E} is properly interpreted as “the expected
value based on future randomness, given all information available at time t”, let’s consider
the simplest possible discrete-time analogue. Consider a 2-stage coin-flipping process which
obtains at each stage heads (probability p) or tails (probability ¢ = 1 — p). We visualize it
using a (nonrecombinant) binomial tree, numbering the states as shown in Figure 1.
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Figure 1: Binomial tree for visualizing conditional probabilities

The space V3 is 4-dimensional; its functions are determined by the full history, i.e. they can
be viewed as functions of the time-2 nodes (numbered 3,4, 5,6 in the figure). The space V}
is two-dimensional; its functions are determined by just the first flip. Its elements can be
viewed as functions of the time-1 nodes (numbered 1,2 in the figure); or, equivalently, they
are functions f € V5 such that f(3) = f(4) and f(5) = f(6). (Such a function can be viewed



as a function of the time-1 nodes by setting f(1) = f(3) = f(4) and f(2) = f(5) = f(6).
The “expected value of g given time-1 information” intuitively has values

Er[g)(1) = pg(4) + q9(3), Er[g)(2) = pg(6) + qg(5).

To check that this agrees with our prior definition, we must verify that (f, E, lg)) = (f,9)
for all f € V4. In other words we must check that

E |B[g)f| = Elof] M
whenever f(2) = f(5) = f(6) and f(1) = f(3) = f(4). The left hand side is

qB1[g)(1)f(1) + pEi[g](2) £ (2)

while the right hand side is

*f(3)9(3) + paf (4)9(4) +paf(5)9(5) +p* f(6)9(6)
which can be rewritten (since f(1) = f(3) = f(4) and f(2) = f(5) = f(6)) as

q(q9(3) +pg(4))f(1) + p(qag(5) + pg(6))f(2).

The formula given above for Ey[g] is precisely the one that makes (1) correct.

A stochastic process z(t) is “adapted” to F; if its values up to and including time ¢ are
determined by the statements in F;. (The stochastic processes obtained from Brownian
motion by solving stochastic differential equations automatically have this property.) Such
a stochastic process is called a martingale if Eq[x(t)] = z(s) for s < t. An equivalent
statement: E[z(t) — z(s)] = 0 for s < ¢. Intuitively: given current information, there’s
no point betting on the future of the process; it’s equally likely to go up or down. (That’s
not quite right; it confuses the mean and the median. The correct statement is that the
expected future value, based on present information, is exactly the present value.)

A stochastic process f(t) is called nonanticipating if its value at time ¢ depends only on
information available at time ¢, i.e. if f(¢) is adapted to F;. An example is f(t) = F(t,w(t))
for any (deterministic) function F': R?> — R. But this isn’t the only type of example — for
example f(t) = [3w(s)ds is also nonanticipating.

Stochastic integrals. We are interested in stochastic differential equations of the type

dy = f(y,s)ds + g(y,s)dw, y(t) ==z

(Pretty much everything we’ll say extends straightforwardly to SDE’s of the form dy =
fds + gdw with f and g random but nonanticipating.) The stochastic differential equation
is really shorthand for the associated integral equation
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To understand what this means we must understand the two integrals on the right.

The first one is relatively easy. If y is continuous in s then

[ stwts),9)as

makes perfect sense as a Riemann integral. (All the processes considered in this review
do have y continuous in s, so this hypothesis is OK. The case when f is random but
nonanticipating is more subtle; the successful treatment is similar to the one of [ gdw
explained below.)

The second “stochastic” integral is more subtle. The proper interpretation is this: for any
random but nonanticipating integrand g(s),
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with the notation a = t; <ty < ... <ty = b and At = max; |[t;+1 — t;|. (We may, but we
don’t have to, choose the t;’s equally spaced.) The important point is that we evaluate g
at the beginning of the increment. We’ll show presently that making the opposite choice
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would give a different answer. Thus the stochastic integral is not a Riemann integral, but
something different.

A key property of the stochastic integral is immediately clear: since g is nonanticipating,

b
E, / gdw =0 (4)
a
because each term in the sum has

By, [9(t:) (w(tiv1) —w(t;))] =0

(since w(t;+1) —w(t;) is independent of all time-¢; information, hence independent of g(¢;)).
Therefore by the tower property E, [g(ti)[w(ti+1) —w(t;)]] = 0, and summing gives (4).
Remembering the definition of a martingale, (4) says the solution of a stochastic differential
equation of the form dy = gdw (with no dt term on the right) is a martingale.

What kind of limit do we mean in (3)?7 The mean-square kind. If a sequence of func-
tions ¢ () is defined for € (0,1), one says ¢ = lim,_. ¢, in the mean-square sense if
fol |pn(z) — ¢(z)|*dx — 0. The situation for the stochastic integral is similar, except the
integral is replaced by expectation:
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We won’t prove the existence of this limit in any generality. Instead let’s do a simple
example — which displays many of the essential ideas of the general case. Specifically: let’s
show that

b
/a wdw = $w?(b) — dw?(a) — (b—a)/2.

Notice that this is different from the formula you might have expected based on elemen-
tary calculus (wdw # d(w?)). The calculus rule is based on Chain Rule, whereas in the
stochastic setting we must use Ito’s formula — as we’ll explain presently. If I skip too many
details, you’ll find a slower treatment in Neftci (in the first edition the relevant pages are
179-184).

According to the definition, | ; w dw is the limit of

N-1
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A bit of manipulation shows that this is exactly equal to
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so our assertion is equivalent to the statement

N-1
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In the Ito calculus we sometimes write “dw x dw = dt;” when we do, it’s basically shorthand
for (5). Notice that each term (w(t;1+1)—w(t;))? is random (the square of a Gaussian random
variable with mean 0 and variance t;11 — t;). But in the limit the sum is deterministic, by
a sort of law of large numbers. If you believe it’s deterministic then the value is clear, since
Sy =N w(tisr) — w(t;))? has expected value b — a for any N.

To prove (5) in the mean-square sense, we must show that

E|(Sn = (b—a))’| =0

as N — oo. Expanding the square, this is equivalent to

E Sk - (b-a)?] —0.

Now,
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The last term is easy to evaluate, using the properties of Brownian motion:

E [(w(tiv1) = w(t)*(w(ty) = w(t;)?] = (i1 — ) (01 — 1)

when ¢ # j, and
E [(wtis) = w(t)'] = 3(ti1 — )2

(The latter follows from the fact that w(t;4+1) —w(¢;) is Gaussian with mean 0 and variance
tiv1 — t;.) We deduce after some manipulation that
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which does indeed tend to 0 as max; |t;11 — t;| — 0.

We now confirm a statement made earlier, that the stochastic integral just defined is different
from
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which tends in the limit (we proved above) to b— a. Thus the alternative (wrong) definition
(6) equals 3w?(b) — 2w?(a) + $(b—a). If we had used this definition, the stochastic integral
would not have been a martingale.

Stochastic differential equations. It’s important to say that stochastic differential equa-
tions have solutions, under reasonable conditions on the form of the equation. Moreover the
resulting stochastic process y(s) has continuous sample paths (y is a continuous function of
s). For the purposes of the course PDE for Finance you do not need to know how to prove
this.

The Ito calculus. If y(s) solves a stochastic differential equation, it’s natural to seek a
stochastic differential equation for ¢(s,y(s)) where ¢ is any smooth function. If y solved an
ordinary differential equation we would obtain the answer using chain rule. When y solves
a stochastic differential equation we must use the Ito calculus instead. It replaces the chain
rule.

Let’s first review the situation for ordinary differential equations. Suppose dy/dt = f(y,t)
with initial condition y(0) = 2. It is a convenient mnemonic to write the equation in the
form

dy = f(y,t)dt.



This reminds us that the solution is well approximated by its finite difference approximation
y(tiv1) —y(ti) = f(y(t:), ti)(tix1 — t;). Let us write

Ay = f(y7 t)At

as an abbreviation for the finite difference approximation. (In this discussion A is always
an increment, never the Laplacian.) The ODE satisfied by z(t) = ¢(y(t)) is, by chain rule,
dz/dt = ¢'(y(t))dy/dt. The mnemonic for this is

do = ¢'dy.
It reminds us of the proof, which boils down to the fact that (by Taylor expansion)
A¢ = ¢'(y)Ay + error of order |Ayl|?.

In the limit as the time step tends to 0 we can ignore the error term, because |Ay|? < C|At|?
and the sum of these terms is of order max; |t;+1 — t;|.

OK, now the stochastic case. Suppose ¥y solves

dy = f(y,t)dt + g(y, t)dw.

Ito’s lemma, in its simplest form, says that if ¢ is smooth then z = ¢(y) satisfies the
stochastic differential equation

dz = ¢/ (y)dy + 3¢ (y)g*dt = &' (y)gdw + [¢'(y) f + 36" (4)9” | dt.
Here is a heuristic justification: carrying the Taylor expansion of ¢(y) to second order gives

A = d(y(tiv1)) — o(y(ts))
= ¢ (y(ta)ly(tiv1) — y(ta)] + 56" (y(t:))[y(tir1) — y(t:)]* + error of order |Ayl?.

So far we haven’t cheated. It’s tempting to write the last expression as
¢’ (y)(gAw + fAL) + 2" (y)g* (Aw)? + errors of order [Ay[® + [Aw]||At| + |At|?

where ¢'(y) = ¢'(y(t:)), g = g(y(ti), t;), Aw = w(t;y1) — w(t;), ete. (In other words:
it’s tempting to substitute Ay = fAt 4+ gAw.) That’s not quite right: in truth Ay =
y(ti+1) — y(t;) is given by a stochastic integral from ¢; to t;11, and our cheat pretends that
the integrand is constant over this time interval. But fixing this cheat is a technicality
— much as it is in the deterministic setting — so let’s proceed as if the last formula were
accurate. I claim that the error terms are negligible in the limit At — 0. This is easy to
see for the |At|? terms, since

> (tipn — t)? <maxftipy —ti| D [tips — 4
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A similar argument works for the |At||Aw| terms. The |Ay|® term is a bit more subtle;
we’ll return to it presently. Accepting this, we have

A¢ =~ ¢ (y)(gAw + fAL) + 3¢ (y)g* (Aw)>.



Now comes the essence of the matter: we can replace (Aw)? by At. A more careful statement
of this assertion: if a = t; <ty < ... <ty = b then

9 b
Algozh (tie) = w(t)? = [ h(e)ds (7)

if h is non-anticipating. Notice: we don’t claim that h(Aw)? is literally equal to hAt for
any single time interval, no matter how small. Rather, we claim that once the contributions
of many time intervals are combined, the fluctuations of w cancel out and the result is an
integral dt. We proved (7) in the case h = 1; the general case is more technical, of course,
but the ideas are similar.

We skipped over why the |Ay|? error terms can be ignored. The reason is that they’re
controlled by

max|y( it1) |Z ly(tiv1) — )| .

The argument above shows that the sum is finite. Since y(t) is continuous, max; |y(ti+1) —
y(t;)| tends to zero. So this term is negligible.

The same logic applies more generally, when w is a vector-valued Brownian motion, y is
vector-valued, and ¢ is a function of time as well as y. The only new element (aside from
some matrix algebra) is that the quadratic terms in Aw are now of the form

AwjAwy, = [w;(tip1) — wi(t:)][wk(tiv1) — wg(ts)].
An argument very much like the proof of (5) shows that

N-1 0
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which justifies (at the same heuristic level as our scalar treatment) the rule that Aw;Awy
should be replaced by dt when j =k, and 0 when j # k.
Examples. Knowing the preceding arguments is less important than having some facility

with the actual application of Ito’s lemma. Here are some basic examples.

Calculating [ wdw. Above we showed, by brute force calculation based on the definition of
a stochastic integral, that

/ wdw = L(w?(b) — w¥(a)) — 1(b - a).
Ito’s lemma gives a much easier proof of the same result: applying it to ¢(w) = w? gives
d(w?) = 2wdw + dwdw = 2wdw + dt

which means that w?(b) — w?(a) = 2 f;w dw+ (b —a).



Log-normal dynamics. Suppose
dy = p(t)ydt + o(t)ydw (8)

where u(t) and o(t) are (deterministic) functions of time. What stochastic differential
equation describes log y? Ito’s lemma gives

dlogy) = y 'dy— gy dydy
= p(t)dt + o(t)dw — 20°(t)dt.

Remembering that y(t) = €°8¥() | we see that

b1 _0'2 S th' w
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In particular, if ¢ and o are constant in time we get

y(t1) = y(to)e(ﬂ—02/2)(t1—t0)+0(w(t1)—w(to))_

Stochastic stability. Consider once more the solution of (8). It’s natural to expect that if
L is negative and o is not too large then y should tend (in some average sense) to 0. This
can be seen directly from the solution formula just derived. But an alternative, instructive
approach is to consider the second moment p(t) = E[y?(t)]. From Ito’s formula,

d(y?) = 2ydy + dydy = 2y(uydt + oydw) + o%y?dt.

Taking the expectation, we find that
2 2 h 2\ o, 2
Bl () = Ely*(to)] = [ @u+ o) Bl ds
0

or in other words
dp/dt = (2u + o*)p.

Thus p = E[y?] can be calculated by solving this deterministic ODE. If the solution tends
to 0 as t — oo then we conclude that y tends to zero in the mean-square sense. When p
and o are constant this happens exactly when 2u + 02 < 0. When they are functions of
time, the condition 2u(t) + 02(t) < —c is sufficient (with ¢ > 0) since it gives dp/dt < —cp.

An example related to Girsanov’s theorem. For any (deterministic or non-anticipating)
function ~(s),
B |oJiredw=1 [P 6)ds] _

In fact, this is the expected value of (), where

dz = —%yz(t)dt +v(t)dw, z(a) =0.
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Ito’s lemma gives
d(e*) = e*dz + Le*dzdz = e*yduw.

So ,
e*(0) _ ¢#(a) :/ e*ydw.
a
The right hand side has expected value zero, so
Ele*"] = Ele* @] = 1.
Notice the close relation with the previous example “lognormal dynamics”: all we’ve really
done is identify the conditions under which p = 0 in (8).

[Comment for those who know about risk-neutral pricing: this example is used in the
discussion of Girsanov’s theorem, which gives the relation between the “subjective” and
“risk-neutral” price processes. The expression

oS ) dw=3 [ (s)ds

is the Radon-Nikodym derivative relating the associated measures on path space. The fact
that it has expected value 1 reflects the fact that both measures are probability measures.]

The Ornstein-Uhlenbeck process. You should have learned in calculus that the deterministic
differential equation dy/dt + Ay = f can be solved explicitly when A is constant. Just
multiply by e4 to see that d(eAty)/dt = e/ f then integrate both sides in time. So it’s
natural to expect that linear stochastic differential equations can also be solved explicitly.
We focus on one important example: the “Ornstein-Uhlenbeck process,” which solves

dy = —cydt + odw, y(0)==z

with ¢ and o constant. (This is not a special case of (8), because the dw term is not
proportional to y.) Ito’s lemma gives

d(ey) = celydt + e“dy = e“odw
SO .
ely(t) — o = O'/ e“duw,
0
or in other words

t
y(t) = e o + 0/ e dw(s).
0

Now observe that y(¢) is a Gaussian random variable — because when we approximate the
stochastic integral as a sum, the sum is a linear combination of Gaussian random variables.
(We use here that a sum of Gaussian random variables is Gaussian; also that a limit of
Gaussian random variables is Gaussian.) So y(t) is entirely described by its mean and
variance. They are easy to calculate: the mean is

Bly(t)] = ez

11



since the “dw” integral has expected value 0. To calculate the variance let us accept for a

moment the formula
b 2 b
( / 9(y(s),s) dw) } = / E[¢*(y(s),s)] ds. (9)

Using this, the variance of the Ornstein-Uhlenbeck process is easily determined:

o2E l(/ot ec(s—t)dw(s)>2]

t
_ 0_2/ eZc(s—t)dS
0

—2ct

E

B |(y(t) — Bly(®))?]

1—ce
2
7 2c

The justification of the formula (9) is easy. Just approximate the stochastic integral as a
sum. The square of the stochastic integral is approximately

N-—1
=Y 9(si),0)9(y(ss), 55)[wlsitr) —wlsi)][wlsjr1) — wls;)]
i.j=1

For i # j the expected value of the 7, jth term is 0 (for example, if ¢ < j then [w(sj4+1)—w(s;)]
has mean value 0 and is independent of g(y(s;), s:), 9(y(s;),s;), and [w(sij+1) —w(s;)]). For
i = j the expected value of the i, jth term is E[g?(y(si), si)][si+1 — si]. So the expected
value of the squared stochastic integral is approximately

N-1
> Elg?(y(si), si)llsir — sil,
i=1

and passing to the limit As — 0 gives the desired assertion.

We close this example with a brief discussion of the relevance of the Ornstein-Uhlenbeck
process. One of the simplest interest-rate models in common use is that of Vasicek, which
supposes that the (short-term) interest rate r(t) satisfies

dr = a(b—r)dt + odw

with a, b, and o constant. Interpretation: r tends to revert to some long-term average value
b, but noise keeps perturbing it away from this value. Clearly y = r — b is an Ornstein-
Uhlenbeck process, since dy = —aydt + odw. Notice that r(¢) has a positive probability of
being negative (since it is a Gaussian random variable); this is a reminder that the Vasicek
model is not very realistic. Even so, its exact solution formulas provide helpful intuition.

12



Historically, the Ornstein-Uhlenbeck process was introduced by physicists Ornstein and
Uhlenbeck, who believed that a diffusing particle had brownian acceleration not brownian
velocity. Their idea was that the position x(t) of the particle at time ¢ should satisfy

dr = wdt
edv = —vdt+ dw

with € > 0 small. As e — 0, the resulting z.(¢) converges to a brownian motion process.
Formally: when e = 0 we recover 0 = —vdt + dw so that dz = (dw/dt)dt = dw. Honestly:
we claim that |z¢(t) — w(t)| converges to 0 (uniformly in t) as € — 0. In fact, writing the
equations for the Ornstein-Uhlenbeck process as

dr. = wdt
dw = wv.dt—+ edv,

then subtracting, we see that
d(ze — w) = edve.

Now use our explicit solution formula for the Ornstein Uhlenbeck process to represent v, in
terms of stochastic integrals, ultimately concluding that eve(t) — 0 as e — 0. (Details left
to the reader.)

Some Exercises. The material in these notes goes beyond what we’ll actually use in PDE
for Finance. But if you have trouble with the following problems, you probably aren’t
prepared for the class.

Problem 1. Let s(t) = s(0)et*t7%(®)  where 1 and o are constant and w is Brownian motion.
(a) Show, using Ito’s formula, that ds = (u + %Uz)sdt + osdw.

(b) Conclude that E[s(t)] — E[s(0)] = (1 + 30> ) Ja E[s(7)]dr, where E denotes expected
value.

(¢) Conclude that E[s(t)] = 3(0)e(u+%02)t'

[Comment: taking ¢t = 1, this gives a proof of the lemma — more commonly proved by

direct integration — that if X is Gaussian with mean p and standard deviation o then
E[eX] _ e”+02/2.]

Problem 2. Let’s use Ito’s formula to calculate the moments of a Gaussian. Set

where w(t) is Brownian motion (with w(0) = 0).

(a) Show, using Ito’s formula, that for k =2,3,...,

Br(t) = %k‘(k —1) /Ot Br—2(s) ds
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(b) Deduce that E[w*(t)] = 3t2. What is E[w®(t)]?

[Comment: the moments of w can also be calculated by direct integration, since w(t) is
Gaussian with mean 0 and variance 1.]

Problem 3. Let u(t) and o(t) be deterministic functions of time. Consider the associated
lognormal process, i.e. the solution of

ds = p(t)sdt + o(t)sdw

with initial condition s(0) = sg. Show that log s(¢) is Gaussian, with mean

Ellog s(t)] = log sp + /Ot[,u(T) — %02(7-)] dr

and variance

14



