
PDE for Finance Notes, Spring 2003 – Section 9
Notes by Robert V. Kohn, Courant Institute of Mathematical Sciences. For use only in
connection with the NYU course PDE for Finance, G63.2706.

About the final exam: As previously announced, our exam is Monday May 12, 8-10pm,
in the usual room Silver 207. Note the time-shift (8-10 not 7-9), intended to give students
taking both Scientific Computing and PDE for Finance some breathing room. If this late
start is a hardship for you, tell me – it is possible by request to take the exam 7-9pm instead
of 8-10pm. The exam will be closed-book, but you may bring two sheets of notes (8.5× 11,
both sides, any font). The preparation such notes is an excellent study tool.

The exam covers the material in Sections 1-8 of the lecture notes, and Homeworks 1-6. Sole
exception: there will be no exam questions using the Fourier Transform. This final Section
9 will not be on the exam.

A good exam question can be answered with very little calculation, provided you understand
the relevant ideas. Most of the exam questions will be similar to (parts of) homework
problems or examples discussed in the notes. The final lecture will be devoted to answering
questions and reviewing what we’ve achieved this semester.

*********************

The martingale method for dynamic portfolio optimization. Sections 5-7 were
devoted to stochastic control. We discussed the value function and the principle of dynamic
programming. In the discrete-time setting dynamic programming gives an iterative scheme
for finding the value function; in the continuous-time setting it leads to the Hamilton-Jacobi-
Bellman PDE. Stochastic control is a powerful technique for optimal decision-making in the
presence of uncertainty. In particular it places few restrictions on the sources of randomness,
and it does not require special hypotheses such as market completeness.

In the continuous-time setting, a key application (due to Merton, around 1970) is dynamic
portfolio optimization. We examined two versions of this problem: one optimizing the utility
of consumption (Section 5), the other optimizing the utility of final-time wealth (Homework
5).

This section introduces an alternative approach to dynamic portfolio optimization. It is
much more recent – the main papers were by Cox & Huang; Karatzas, Lehoczky, & Shreve;
and Pliska, all in the mid-80’s. A very clear, rather elementary account is given in R. Korn
and E. Korn, Option Pricing and Portfolio Optimization: Modern Methods of Financial
Mathematics (American Mathematical Society, 2001). My discussion is a simplified (i.e.
watered-down) version of the one in Korn & Korn.

This alternative approach is called the “martingale method,” for reasons that will become
clear presently. It is closely linked to the modern understanding of option pricing via the
discounted risk-neutral expected value. (Therefore this Section, unlike the rest of the course,
requires some familiarity with continous-time finance.) The method is much less general
than stochastic control; in particular, it requires that the market be complete. When it
applies, however, it provides an entirely fresh viewpoint, quite different from Merton’s. To
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capture the main idea with a minimum of complexity, I shall (as in Section 5 and HW
5) consider just the case of a single risky asset. Moreover I shall focus on the case (like
Problem 1 of HW5) where there is no consumption. So the goal is this: consider an investor
who starts with wealth x at time 0. He can invest in a risk-free asset (“bond”) which offers
constant interest r, or a risky asset (“stock”) whose price satisfies

dS = µSdt + σSdw. (1)

He expects to mix these, putting fraction θ(t) of his wealth in stock and the rest in the
bond; the resulting wealth process satisfies

dX = [(1 − θ)r + θµ]Xdt + θσXdw (2)

with initial condition X(0) = x. His goal is to maximize his expected utility of final-time
wealth:

max
θ(t)

E [h(X(T )]

where h is his utility function and T is a specified time. Of course his investment decisions
must be non-anticipating: θ(t) can depend only on knowledge of S up to time t.

Review of risk-neutral option pricing. Recall that the time-0 value of an option with
payoff f(ST ) is its discounted risk-neutral expected payoff:

option value = e−rT ERN[f(ST )].

Moreover the risk-neutral process differs from (1) by having a different drift: it solves
dS = rSdt + σSdw. By Girsanov’s theorem we can write the risk-neutral expected payoff
using the subjective probability as

ERN[f(ST )] = E[e−z(T )f(ST )] (3)

where

z(t) =
∫ t

0

µ − r

σ
dw + 1

2

∫ t

0

(
µ − r

σ

)2

ds. (4)

Clearly (3) can be written as

option value = E[H(T )f(ST )]

with H(t) = e−rte−z(t). One verifies using Ito’s formula and (4) that

dH = −rHdt − µ − r

σ
Hdw (5)

with initial condition H(0) = 1.

This option pricing formula doesn’t come from thin air. It comes from the absence of
arbitrage, together with the fact that the option payoff f(ST ) can be replicated by a hedge
portfolio, consisting of stock and bond in suitable weights. The option value is the value of
the hedge portfolio at time 0, i.e. the initial capital needed to establish this (time-varying
but self-financing) replicating portfolio.
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The connection with portfolio optimization. What does this have to do with portfolio
optimization? Plenty. The hedge portfolio represents a specific choice of weights θ(t). The
option pricing formula tells us the condition under which a random final-time wealth of the
form X(T ) = f(S(T )) is achievable by a suitable trading strategy: the only restriction is
that f satisfy x = E[H(T )f(ST )].

In portfolio optimization we are not mainly interested final-time wealths of the form f(ST ).
Rather, we are interested in those achievable by a suitable trading strategy (i.e. a non-
anticipating choice of θ(t) for 0 ≤ t ≤ T ). The resulting random final-time wealth will, in
general, be path-dependent; however it is certainly FT measurable, i.e. it is determined by
knowledge of the entire Brownian process {w(t)}0≤t≤T .

Our discussion of option pricing extends, however, to more general (FT -measureable) final-
time wealths. The crucial question is: which (random, FT -measureable) final-time wealths
B are associated with nonanticipating trading strategies θ(t) using initial capital x? The
answer is simple: B has this property exactly if

x = E[H(T )B] (6)

and in that case the associated wealth process X(t) satisfies

H(t)X(t) = E [H(T )B| Ft] . (7)

We’ll prove just the easy direction: that if B = X(T ) for some trading strategy θ(t) then
(6) and (7) hold. (See Korn & Korn for the converse.) Let’s apply Ito’s formula in the form

d(HX) = HdX + XdH + dHdX

(there is no factor of 1/2 in front of the last term, because f(h, x) = xh has ∂2f/∂h∂x =
∂2f/∂x∂h = 1). Substituting (2) and (5) gives

d(HX) = −HX(rdt +
µ − r

σ
dw) + HX({(1 − θ)r + θµ}dt + θσdw) − HX

µ − r

σ
θσdt.

The dt terms cancel, leaving only dw terms. So

H(T )X(T ) − H(t)X(t) =
∫ T

t
[stuff] dw.

Setting t = 0 and taking the expectation of both sides gives

E[H(T )X(T )] = H(0)X(0) = x;

similarly, for any t we take the expectation of both sides conditioned on time-t data to get

E [H(T )X(T )| Ft] = H(t)X(t).

These are the desired assertions. (See e.g. Korn & Korn for the converse.)

The martingale approach to portfolio optimization. Relation (6) changes the task
of dynamic portfolio optimization to a static optimization problem: the optimal final-time
wealth B solves

max
E[H(T )B]=x

E[h(B)].
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The solution is easy. To avoid getting confused let’s pretend the list of possible final-time
states was discrete, with state α having probability pα, 1 ≤ α ≤ N . Then the random
variable B would be characterized by its list of values (B1, . . . , BN ) and our task would be
to solve

max∑
H(T )αBαpα=x

∑
h(Bα)pα

for the optimal B = (B1, . . . , BN ). This is easily achieved using the method of Lagrange
multipliers. If λ is the Lagrange multiplier for the constraint then the solution satisfies
∂L/∂Bα = 0 and ∂L/∂λ = 0 where

L(B,λ) =
∑

h(Bα)pα + λ
(
x −

∑
H(T )αBαpα

)
.

The derivative in λ recovers the constraint∑
H(T )αBαpα = x

and the derivative with respect to Bα gives

h′(Bα) = λH(T )α

for each α. These N + 1 equations determine the values of the N + 1 unknowns Bα and λ.

The continuous case is no different: the optimal B satisfies

h′(B) = λH(T ) (8)

as random variables. Since h is concave, h′ is invertible, so we can solve (8) for B:

B = {h′}−1(λH(T ))

where {h′}−1 is the inverse function of h′. The value of λ is uniquely determined by the
condition that this B satisfy

E[H(T )B] = x.

An example: the Merton problem with logarithmic utility. So far we have not
assumed anything about the drift and volatility: they can be functions of time and stock
price (µ = µ(t, S) and σ = σ(t, S)). But to bring things down to earth let’s consider
a familiar example: the constant-drift, constant-volatility case, with utility h(x) = log x.
Notice that for this utility h′(x) = 1/x, so {h′}−1(y) = 1/y. Also, since the drift and
volatility are constant

H(t) = e−rt−z(t)

with

z(t) =
µ − r

σ
w(t) + 1

2

(
µ − r

σ

)2

t

while
S(t) = S0e

(µ−1
2 σ2)t+σw(t).
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Thus both H(t) and S(t) are determined by knowledge of t and w(t). Put differently: in
this case H(T ) is a function of S(T ).

Specializing (8) to our example gives 1
B = λH(T ), so

B =
1

λH(T )
.

The value of λ is fixed by (6), which gives x = E[H(T )B] = 1
λ thus

λ =
1
x

.

The wealth at time T is determined by (7); it gives

H(t)X(t) = E [H(T )B| Ft] = E
[
λ−1

∣∣∣Ft

]
= 1/λ

whence
X(t) = H−1(t)x.

To implement this solution practically, what we really need is the weight θ(t) associated
with the optimal policy. To find it, observe that by Ito’s formula applied to (5),

d[H−1x] = −H−2xdH + H−3xdHdH = H−1x

[
rdt +

(
µ − r

σ

)2

dt +
µ − r

σ
dw

]
.

This can be written as a wealth-process SDE, i.e. it has the form

dX = [(1 − θ)r + θµ]Xdt + θσXdw

with X(t) = H−1x and

θ =
µ − r

σ2
.

Thus the optimal policy is to keep fraction θ = (µ− r)/σ2 of your wealth in the stock, and
fraction 1− θ in the risk-free bond. This agrees, as it should, with the solution to Problem
1c of HW5.

The optimal portfolio is easy to describe but difficult to maintain, since it requires continuous-
time trading. Indeed, each time S(t) changes, some stock must be bought or sold so the
value of the stock portfolio remains a constant proportion of the total wealth. This is of
course impractical – one gets killed by transaction costs. In the constant-drift, constant-
volatility case a convenient alternative presents itself. We saw that the optimal B is a
function of S(T ) alone. So it can be expressed as the payoff of a suitable option, i.e. there
is a function f (depending on T ) such that B = f(S(T )). (It is not hard to find a formula
for f , using the information given above.) If an option with payoff f were available in the
marketplace, you could simply buy this option at time 0 and do no trading. (The optimal
portfolio is identical to this option’s hedge portfolio, which is in turn functionally equivalent
to the option itself.) In practice the option is not available in the marketplace; even so,
it can be approximated by a suitable combination of calls. This combination of options,
held statically, reproduces (approximately) the optimal Merton payoff without incurring
any transaction costs. For discussion of this observation and its consequences see M. Haugh
and A. Lo, Asset allocation and derivatives, Quantitative Finance 1 (2001) 45-72.
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