
PDE for Finance Notes, Spring 2003 – Section 8
Notes by Robert V. Kohn, Courant Institute of Mathematical Sciences. For use only in
connection with the NYU course PDE for Finance, G63.2706.
Minor corrections and clarifications added 4/28/03.

Underlyings with jumps. We began the semester studying diffusions and the associated
linear PDE’s, namely the backward and forward Kolmogorov equations. This section asks:
what becomes of that story when the underlying process has jumps? The answer, briefly, is
that the backward and forward Kolmogorov equations become integrodifferential equations.
In general they must be solved numerically, but in the constant-coefficient setting they
can be solved using the Fourier transform. One application (though perhaps not the most
important one) is to option pricing. But be careful: when the underlying can jump the
market is not complete; so arbitrage alone does not determine the value of options. Why,
then, should an option have a well-defined price? The answer, due to Merton, assumes that
the extra randomness due to jumps is uncorrelated with the market – i.e. its β is zero.
This means it can be made negligibile by diversification, and (by the Capital Asset Pricing
Model) only the average effect of the jumps is important for pricing.

For basic issues involving processes with jumps and option pricing, I strongly recommend
Merton’s 1976 article “Option pricing when underlying stock returns are discontinuous”
(reprinted as Chapter 9 of the book Continuous Time Finance). The Fourier Transform is
discussed in many books; a fairly basic treatment can be found in H.F. Weinberger, A First
Course in Partial Differential Equations with Complex Variables and Transform Methods
(an inexpensive Dover paperback). Two current research papers on this topic are A. Lipton,
Assets with jumps, RISK, Sept. 2002, 149-153; and A. Lewis, “A simple option formula for
general jump-diffusion and other exponential Levy processes” (2001 preprint, available at
http://optioncity.net/pubs/ExpLevy.pdf).

********************

Jump-diffusion processes. The standard (constant-volatility) Black-Scholes model as-
sumes that the logarithm of an asset price is normally distributed. In practice however
the observed distributions are not normal – they have “fat tails,” i.e. the probability of a
very large positive or negative change is (though small) much larger than permitted by a
Gaussian. The jump-diffusion model provides a plausible mechanism for explaining the fat
tails and their consequences.

We work for simplicity in one space dimension. A diffusion solves dy = fdt + gdw. A
jump-diffusion solves the same stochastic differential equation most of the time, but the
solution occasionally jumps.

We need to specify the statistics of the jumps. We suppose the occurrence of a jump is a
Poisson process with rate λ. This means the jumps are entirely independent of one another.
Some characteristics of Poisson processes:

(a) The probability that a jump occurs during a short time interval of length ∆t is λ∆t+
o(∆t).
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(b) The probability of two or more jumps occuring during a short time interval of length
∆t is negligible, i.e. o(∆t).

(c) The probability of exactly n jumps occuring in a time interval of length t is (λt)n

n! e−λt.

(d) The mean waiting time for a jump is 1/λ.

We also need to specify what happens when a jump occurs. Our assumption is that a jump
takes y to y + J . The jump magnitudes are independent, identically distributed random
variables. In other words, each time a jump occurs, its size J is selected by drawing from
a pre-specified probability distribution.

This model is encapsulated by the equation

dy = fdt + gdw + JdN

where N counts the number of jumps that have occurred (so it takes integer values, starting
at 0) and J represents the random jump magnitude. Ito’s Lemma can be extended to this
setting: if v(x, t) is smooth enough and y is as above then v(y(t), t) is again a jump-diffusion,
with

d[v(y(t), t)] = (vt + vxf + 1
2vxxg2)dt + vxgdw + [v(y(t) + J, t) − v(y(t), t)]dN.

All the terms on the right are evaluated at (y(t), t), as usual. In writing the jump term,
we’re trying to communicate that while the occurence of a jump in v(y(t), t) is determined
by N (i.e. by the presence of a jump in y) the size of the jump depends on y(t) and the
form of v.

Now consider the expected final-time payoff

u(x, t) = Ey(t)=x [w(y(T ))]

where w(x) is an arbitrary “payoff” (later it will be the payoff of an option). It is described
as usual by a backward Kolmogorov equation

ut + Lu = 0 for t < T , with u(x, T ) = w(x) at t = T . (1)

The operator L for our jump-diffusion process is

Lu = fux + 1
2g2uxx + λE [u(x + J, t) − u(x, t)] .

The expectation in the last term is over the probability distribution of jumps. The proof
of (1) is no different from the one we gave in Section 1 for diffusions: let u solve (1), and
apply Ito’s formula. This gives

u(y(T ), T ) − u(x, t) =
∫ T

0
(uxg)(y(s), s) dw +

∫ T

0
(us + uxf + 1

2uxxg
2)(y(s), s) ds

+
∫ T

0
[u(y(s) + J, s) − u(y(s), s)]dN.
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Now take the expectation. Only the jump term is unfamiliar; since the jump magnitudes
are independent of the Poisson jump occurence process, we get

E ([u(y(s) + J, s) − u(y(s), s)]dN) = E ([u(y(s) + J, s) − u(y(s), s)]) λds.

Thus when u solves (1) we get

E[u(y(T ), T )] − u(x, t) = 0.

This gives the result, since u(y(T ), T ) = w(y(T )) from the final-time condition on u.

A similar argument shows that the discounted final-time payoff

u(x, t) = Ey(t)=x

[
e−r(T−t)w(y(T ))

]

solves
ut + Lu − ru = 0 for t < T , with u(x, T ) = w(x) at t = T ,

using the same operator L.

What about the probability distribution? We know from Section 1 that it solves the forward
Kolmogorov equation,

ps − L∗p = 0 for s > 0, with p(z, 0) = p0(z)

where p0 is the initial probability distribution and L∗ is the adjoint of L. What is the
adjoint of the new jump term? For any functions ξ(z), η(z) we have

∫ ∞

−∞
E[[ξ(z + J) − ξ(z)] η(z) dz =

∫ ∞

−∞
ξ(z)E[[η(z − J) − ξ(z)] dz =

since
∫ ∞
−∞ E[ξ(z + J)]η(z) dz =

∫ ∞
−∞ ξ(z)E[η(z − J)] dz. Thus

L∗p = 1
2 (g2p)zz − (fp)z + λE [p(z − J) − p(z)] ,

i.e. the probability distribution satisfies

ps − 1
2(g2p)zz + (fp)z − λE [p(z − J, s) − p(z, s)] = 0.

**************

Solution via Fourier transform. In general the backward and forward Kolmogorov
equations must be solved numerically, but in the constant-coefficient setting we can do
better. So we now focus on

dy = µdt + σdw + JdN

i.e. we take f and g constant. To be specific let’s focus on the forward Kolmogorov equation,
which is now

ps − 1
2σ2pzz + µpz − λE [p(z − J, s) − p(z, s)] = 0 (2)
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and let us solve it with initial condition p(0) = δz=0. (This will give us the fundamental
solution, i.e. p(z, s) = probability of being at z at time s given that you started at 0 at
time 0.)

Why is the Fourier transform useful in this setting? Basically, because the forward equation
is a mess – nonlocal in space (due to the jump term) and involving derivatives too (the
familiar terms). But when we take its Fourier transform in space we get a simple, easy-to-
solve ODE. The result is a simple expression not for the probability distribution itself, but
rather for its Fourier transform – what a probabilist would call the characteristic function
of the distribution.

Most students in this class will be relatively unfamiliar with the Fourier transform. Here’s
a brief summary of what we’ll use:

(a) Given a function f(x), its Fourier transform f̂(ξ) = F [f ](ξ) is defined by

f̂(ξ) =
∫ ∞

−∞
f(x)eixξ dx.

Notice that even if f is real-valued, f̂ is typically complex-valued.

(b) Elementary manipulation reveals that the translated function f(x − a) has Fourier
transform

F [f(x − a)](ξ) = eiξaf̂(ξ)

(c) Integration by parts reveals that the Fourier transform takes differentiation to multi-
plication:

F [fx](ξ) = −iξf̂(ξ)

(d) It is less elementary to prove that the Fourier transform takes convolution to multi-
plication: if h(x) =

∫ ∞
−∞ f(x − y)g(y) dy then

ĥ(ξ) = f̂(ξ)ĝ(ξ).

(e) Another less elementary fact is Plancherel’s formula:
∫ ∞

−∞
fg dx =

1
2π

∫ ∞

−∞
F [f ]F [g] dξ

where f is the complex conjugate of f .

(f) The Fourier transform is invertible, and

f(x) =
1
2π

∫ ∞

−∞
e−ixξ f̂(ξ) dξ

(g) The Fourier transform of a Gaussian is again a Gaussian. More precisely, for a centered
Gaussian with variance σ2,

F
[

1√
2πσ

e−x2/2σ2
]

= e−σ2ξ2/2.
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OK, let’s use this tool to solve the forward equation (2). We apply the Fourier transform
(in space) to each term of the equation. The first three terms are easy to handle using
property (c). For the jump term, let the jump J have probability density ω, that

E [p(z − J) − p(z)] =
∫

[p(z − J) − p(z)]ω(J) dJ =
∫

p(z − J)ω(J) dJ − p(z).

By property (d) this the Fourier transform of this term is (ω̂ − 1)p̂. Thus in the Fourier
domain the equation becomes

p̂s + 1
2σ2ξ2p̂ − iξµp̂ − λ(ω̂ − 1)p̂ = 0

with initial condition p̂(0) =
∫

eiξzδz=0 dz = 1. Writing the equation in the form

p̂s = K(ξ)p̂

with
K(ξ) = −1

2σ2ξ2 + iξµ + λ(ω̂(ξ) − 1)

we recognize immediately that the solution is

p̂(ξ, s) = esK(ξ). (3)

The probability density itself can of course be obtained by taking the inverse Fourier trans-
form:

p(z, s) =
1
2π

∫ ∞

−∞
e−izξ+sK(ξ) dξ. (4)

********************

Option pricing. What use is this? Well, one can explore what the tails of the distribution
look like, as you vary the jump rate λ and jump distribution ω. Or one can use it to
price options. Recall that the value of an option should be the discounted expected payoff
relative to the risk-neutral probability distribution. Assume for the moment that the under
the risk-neutral distribution the stock price is ey where y is a jump-diffusion as above. Then
the time-0 value of an option with payoff w is

e−rT Ey(0)=ln S0
[w(ey)]

if the time-0 stock price is S0. If w(S) vanishes for S near 0 and ∞ (corresponding to y very
large negative or positive) then the option price is easy to express. Let v(y) = w(ey) be
the payoff as a function of y, and let x = ln S0. By translation invariance, the probability
density of y is p(z − x, T ) where p is given by (4). Therefore

Ey(0)=ln S0
[w(ey)] =

∫
p(z − x, T )v(z) dz

=
1
2π

∫
F [p(z − x, T )]F [v] dξ

=
1
2π

∫
e−iξxp̂(−ξ, T )v̂(ξ)dξ. (5)
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In the last step we used that F [p(z−x, T )] = eiξxp̂(ξ, T ), and the fact that the complex con-
jugate of p̂(ξ, T ) =

∫
eiξzp(z, T ) dz is

∫
e−iξzp(z, T ) dz = p̂(−ξ, T ) since p is real. Equation

(5) reduces the task of option pricing to the calculation of two Fourier transforms (those of
ω and v) followed by a single integration (5).

The hypothesis that the payoff w(S) vanishes near S = 0 and S = ∞ is inconvenient,
because neither a put nor a call satisfies it. Fortunately this hypothesis can be dispensed
with. Consider for example the call w(S) = (S − K)+, for which v(y) = (ey − K)+. Its
Fourier transform is not defined on the real axis, because the defining integral diverges as
y → ∞. But e−αyv(y) decays near ∞ for α > 1. So its Fourier transform in y is well-defined.
This amounts to examining the Fourier transform of v along the line =ξ = α (here =ξ is
the imaginary part of ξ) since

F [e−αyv(y)](ξ1) =
∫ ∞

−∞
ei(ξ1+iα)yv(y) dy.

Fortunately, the Plancherel formula isn’t restricted to integrating along the real axis in
Fourier space; one can show that

∫ ∞

−∞
fg dx =

1
2π

∫ ∞

−∞
F [f ](ξ1 + iα)F [g](ξ1 + iα) dξ1

if the Fourier transforms of f and g exist (and are analytic) at =ξ = α. Using this, an
argument similar to that given above shows that

Ey(0)=ln S0
[w(ey)] =

∫
p(z − x, T )v(z) dz =

1
2π

∫
ei(−ξ1+iα)xp̂(−ξ1 + iα, T )v̂(ξ1 + iα)dξ1.

By the way, in the case of the call the Fourier transform of v is explicit and easy:

v̂(ξ) =
∫ ∞

ln K
eiyξ(ey − K) dy = − K1+iξ

ξ2 − iξ

by elementary integration. Here ξ = ξ1 + iα is any point in the complex plane such that
the integral converges (this requires α > 1).

How practical is this? Not very. European options are relatively liquid. Their prices are
visible in the marketplace. Interpreting their prices using standard Black-Scholes (deducing
an implied volatility from the option price) one obtains a result in contradiction to the
model: the implied volatility depends on maturity and strike price (the dependence on
strike price is often called the “volatility smile”). The introduction of jumps provides a
plausible family of models that’s better able to fit the market data. But it introduces
headaches of modeling and calibration (e.g. how to choose the distribution of jumps?).
If the goal were merely to price Europeans, there’s no reason to bother – their prices are
visible in the marketplace.

So why do this? Three reasons. One is the desire for a consistent theoretical framework.
The second, more practical, is the need to hedge (not simply to price) options. The Delta
predicted by a jump-diffusion model is different from that of the Black-Scholes framework;
this will be clear in the next subsection. A third reason is the need to price and hedge
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exotic options (e.g. barriers) which are less liquid. The basic idea: calibrate your jump-
diffusion model using the market prices of European options, then use it to price and hedge
barrier options. The difficulty of course is that pricing a barrier requires solving a boundary-
value problem; thinking probabilistically, it requires knowing the probability distribution of
hitting times. Such information can be obtained for some jump-diffusion processes. This
topic is however beyond the scope of the present discussion (see e.g. the article by Lipton
cited on page 1).

****************

Hedging and the risk-neutral process. We assumed above that the time-0 value of an
option with payoff w(S) should be the discounted final-time payoff under “the risk-neutral
dynamics.” This is not obvious; indeed, it is a modeling hypothesis not consequence of
arbitrage. I now explain the meaning and logic of this hypothesis, following Merton.

It is convenient to focus on the stock price itself not its logarithm. If (as above) J represents
a typical jump of log S then the stock price leaps from S to eJS, i.e. the jump in stock price
is (eJ −1)S. So (applying the jump-diffusion version of Ito to S = ey, with dy = µdt+σdw)
the stock dynamics is

dS = (µ + 1
2σ2)Sdt + σSdw + (eJ − 1)SdN.

The associated risk-neutral process is determined by two considerations:

(a) it has the same volatility and jump statistics – i.e. it differs from the subjective
process only by having a different drift; and

(b) under the risk-neutral process e−rtS is a martingale, i.e. dS − rSdt has mean value 0.

We easily deduce that the risk-neutral process is

dS = (r − λE[eJ − 1])Sdt + σSdw + (eJ − 1)SdN. (6)

Applying Ito once more, we see that under the risk-neutral dynamics y = log S satisfies

dy = (r − 1
2σ2 − λE[eJ − 1])dt + σdw + JdN

Thus the formalism developed in the preceding subsection can be used to price options; we
need only set µ = r − 1

2σ2 − λE[eJ − 1].

But is this right? And what are its implications for hedging? To explain, let’s examine
what becomes of the standard demonstration of the Black-Scholes PDE in the presence of
jumps. Assume the option has a well-defined value u(S(t), t) at time t. Suppose you try to
hedge it by holding a long position in the option and a short position of ∆ units of stock.
Then over a short time interval the value of your position changes by

d[u(S(t), t)] − ∆dS = utdt + uS([µ + 1
2σ2]Sdt + σSdw) + 1

2uSSσ2S2dt

+[u(eJS(t), t) − u(S(t), t)]dN

−∆([µ + 1
2σ2]Sdt + σSdw) − ∆(eJ − 1)SdN.
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There are two sources of randomness here – the Brownian motion dw and the jump process
dN – but only one tradeable. So the market is incomplete, and there is no choice of ∆ that
makes this portfolio risk-free.

But consider the choice ∆ = uS(S(t), t). With this choice the randomness due to dw cancels,
leaving only the uncertainty due to jumps:

change in portfolio value = (ut+ 1
2σ2S2uSS)dt+{[u(eJS(t), t)−u(S(t), t)]−uS (eJS−S)}dN.

To make progress, we must assume something about the statistics of the jumps. Merton’s
suggestion (still controversial) was to assume they are uncorrelated with the marketplace.
The impact of such randomness can be eliminated by diversification. Put differently: ac-
cording the the Capital Asset Pricing Model, for such an investment (whose β is zero) only
the mean return is relevant to pricing. So the mean return on our hedge portfolio should
be the risk-free rate:

(ut + 1
2σ2S2uSS)dt + λE[u(eJS(t), t) − u(S(t), t) − (eJS − S)uS ]dt = r(u − SuS)dt. (7)

After rearrangement, this is precisely the backward Kolmogorov equation describing the
discounted final-time payoff under the risk-neutral dynamics (6):

ut + (r − λE[eJ − 1])SuS + 1
2σ2S2uSS − ru + λE[u(eJS, t) − u(S, t)] = 0.

A final remark about the experience of the investor who follows this hedge rule. If the
option value is convex in S (as we expect for a call or a put) then the term in (7) associated
with the jumps is positive:

E[u(eJS(t), t) − u(S(t), t) − (eJS − S)uS ] ≥ 0.

So in the absence of jumps the value of the hedge portfolio (long the option, short ∆ = uS

units of stock) rises a little slower than the risk-free rate. Without accounting for jumps, the
investor who follows this hedge appears to be falling behind (relative to a cash investment
at the risk-free rate). But due to convexity the net effect of the jumps is favorable – exactly
favorable enough that the investor’s long-term (mean) experience is risk-free.
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