
PDE for Finance Notes, Spring 2003 – Section 7
Notes by Robert V. Kohn, Courant Institute of Mathematical Sciences. For use only in
connection with the NYU course PDE for Finance, G63.2706.

About the final exam: Our exam is Monday May 12, 8-10pm, in the usual room Silver
207. Note the time-shift (8-10 not 7-9), intended to give students taking both Scientific
Computing and PDE for Finance some breathing room. If this late start is a hardship for
anyone, see me – it is possible by request to take the exam from 7-9pm instead of 8-10pm.
The exam will be closed-book, but you may bring two sheets of notes (8.5× 11, both sides,
any font). The preparation such notes is an excellent study tool.

Addendum to Section 6: We solved various optimal stopping problems (Examples 1-3 in
the Section 6 notes) by (a) guessing that the optimal strategy involved a certain threshold,
then (b) choosing the threshold optimally, by direct maximization of the associated value
or by applying the high-order-contact condition. We also gave (c) a verification argument,
showing that the resulting value function was truly optimal – no stopping criterion could do
better. There are two subtleties to the verification argument. One was noted – it requires
applying Ito’s formula to a function that’s only piecewise smooth; this can be justified since
the value function is C1. The other subtlety was however entirely swept under the rug:
we used the assertion that E[

∫ τ
0 g dw] = 0. But this is clear in general only for bounded

stopping times; we saw in HW1 that it can fail for an unbounded stopping time. How to get
around this? Here’s the answer: for any (possibly unbounded) stopping time τ , consider the
truncated stopping times τk = min{τ, k}. Clearly τk → τ as k → ∞. Since τk is bounded,
there’s no problem applying the verification argument to it. In the context of Example 1 of
Section 6, for example, this gives

Ey(0)=x

[
e−τkf(y(τk)

] ≤ ua∗(x).

The limit k → ∞ is handled by Fatou’s lemma from real variables. It tells us that

Ey(0)=x

[
lim inf
k→∞

e−τkf(y(τk)
]
≤ lim inf

k→∞
Ey(0)=x

[
e−τkf(y(τk)

]

provided the payoff f is bounded below. In the present setting lim infk e−τkf(y(τk) =
e−τf(y(τ)), so these relations combine to give

Ey(0)=x

[
e−τf(y(τ))

] ≤ ua∗(x)

as desired.

Recommended reading: Merton and beyond. In Section 5, HW4, and HW5 you’ve
been exposed to Merton’s work applying dynamic programming to (i) portfolio optimiza-
tion, and and (ii) the selection of consumption rates. Merton went much further than our
treatment of course, and his articles are a pleasure to read; they are reprinted (with some
updating) in Robert C. Merton, Continuous Time Finance, Blackwell, 1992, chapters 4 and
5. Research continues on closely related issues, for example: (a) the analogue of Merton’s
analysis in the presence of transaction costs [see e.g. M.H.A. Davis and A.R. Norman, Port-
folio selection with transaction costs, Math. of Operations Research 15 (1990) 676-713]; and

1



(b) optimal pricing pricing and hedging of options when the market is incomplete, or the
underlying is not a tradeable [see e.g. T. Zariphopoulou, A solution approach to valuation
with unhedgeable risks, Finance and Stochastics 5 (2001) 61-82, and V. Henderson, Valu-
ation of claims on nontraded assets using utility maximization, Mathematical Finance 12
(2002) 351-373].

*******************

Discrete-time dynamic programming. This section achieves two goals at once. One
is to demonstrate the utility of discrete-time dynamic programming as a flexible tool for
decision-making in the presence of uncertainty. The second is to introduce some more
modern financially-relevant issues. To achieve these goals we shall discuss three specific
examples: (1) optimal control of execution costs (following a paper by Bertsimas and Lo);
(2) a discrete-time version of when to sell an asset (following Bertsekas’ book); and (3)
least-square replication of a European option (following a paper by Bertsimas, Kogan, and
Lo).

In the context of this course it was natural to address continuous-time problems first, be-
cause we began the semester with stochastic differential equations and their relation to
PDE’s. Most courses on optimal control would however discuss the discrete-time setting
first, because it is in many ways easier and more flexible. Indeed, continuous-time dynamic
programming uses stochastic differential equations, Ito’s formula, and the HJB equation.
Discrete-time dynamic programming on the other hand uses little more than basic prob-
ability and the viewpoint of dynamic programming. Of course many problems have both
discrete and continuous-time versions, and it is often enlightening to consider both (or com-
pare the two). A general discussion of the discrete-time setting, with many examples, can be
found in Dimitri Bertsekas, Dynamic Programming: Deterministic and Stochastic Models,
Prentice-Hall, 1987 (on reserve), especially Chapter 2. Our approach here is different: we
shall explain the method by presenting a few financially-relevant examples.

Example 1: Optimal control of execution costs. This example is taken from the recent
article: Dimitris Bertsimas and Andrew Lo, Optimal control of execution costs, J. Financial
Markets 1 (1998) 1-50. You can download a copy from the site www.sciencedirect.com (this
works from the nyu.edu domain; to do it from outside NYU, see the Bobst Library databases
web page for instructions how to set your browswer to use the NYU proxy server).

The problem is this: an investor wants to buy a large amount of some specific stock. If
he buys it all at once he’ll drive the price up, thereby paying much more than necessary.
Better to buy part of the stock today, part tomorrow, part the day after tomorrow, etc.
until the full amount is in hand. But how best to break it up?

Here’s a primitive model. It’s easy to criticize (we’ll do this below), but it’s a good starting
point – and an especially transparent example of stochastic optimal control. Suppose the
investor wants to buy Stot shares of stock over a period of N days. His control variable is
Si, the number of shares bought on day i. Obviously we require S1 + . . . + SN = Stot.

2



We need a model for the impact of the investor’s purchases on the market. Here’s where
this model is truly primitive: we suppose that the price Pi the investor achieves on day i is
related to the price Pi−1 on day i − 1 by

Pi = Pi−1 + θSi + σei (1)

where ei is a Gaussian random variable with mean 0 and variance 1 (independent of Si and
Pi−1). Here θ and σ are fixed constants.

And we need a goal. Following Bertsimas and Lo we focus on minimizing the expected total
cost:

minE

[
N∑

i=1

PiSi

]
.

To set this up as a dynamic programming problem, we must identify the state. There is a
bit of art here: the principle of dynamic programming requires that we be prepared to start
the optimization at any day i = N,N − 1,N − 2, . . . and when i = 1 we get the problem at
hand. Not so hard here: the state on day i is described by the most recent price Pi−1 and
the amount of stock yet to be purchased Wi = Stot − S1 − . . . − Si−1. The state equation
is easy: Pi evolves as specified above, and Wi evolves by

Wi+1 = Wi − Si.

Dynamic programming finds the optimal control by starting at day N , and working back-
ward one day at a time. The relation that permits us to work backward is the one-time-step
version of the principle of dynamic programming. In this case it says:

Vi(Pi−1,Wi) = min
s

E [Pis + Vi+1(Pi,Wi+1)] .

Here Vi(P,W ) is the value function:

Vi(P,W ) = optimal expected cost of purchasing W shares
starting on day i, if the most recent price was P .

(The subscript i plays the role of time.)

To find the solution, we begin by finding VN (P,W ). Since i = N the investor has no choice
but to buy the entire lot of W shares, and his price is PN = P + θW + eN , so his expected
cost is

VN (P,W ) = E [(P + θW + σeN )W ] = PW + θW 2.

Next let’s find VN−1(P,W ). The dynamic programming principle gives

VN−1(P,W ) = min
s

E [(P + θs + σeN−1)s + VN (P + θs + σeN−1,W − s)]

= min
s

E
[
(P + θs + σeN−1)s + (P + θs + σeN−1)(W − s) + θ(W − s)2

]
= min

s

[
(P + θs)s + (P + θs)(W − s) + θ(W − s)2

]
= min

s

[
W (P + θs) + θ(W − s)2

]
.

3



The optimal s is W/2, giving value

VN−1(P,W ) = PW +
3
4
θW 2.

Thus: starting at day N − 1 (so there are only 2 trading days) the investor should split his
purchase in two equal parts, buying half the first day and half the second day. His impact
on the market costs him, on average, an extra 3

4θW 2 over the no-market-impact value PW .

Proceeding similarly for day N − 2 etc., a pattern quickly becomes clear: starting at day
N − i with the goal of purchasing W shares, if the most recent price was P , the optimal
trade on day i (the optimal s) is W/(i + 1), and the expected cost of all W shares is

VN−i(P,W ) = WP +
i + 2

2(i + 1)
θW 2.

This can be proved by induction. The inductive step is very similar to our calculation of
VN−1, and is left to the reader.

Notice the net effect of this calculation is extremely simple: no matter when he starts, the
investor should divide his total goal W into equal parts – as many as there are trading days
– and purchase one part each day. Taking i = N − 1 we get the answer to our original
question: if the most recent price is P and the goal is to buy Stot over N days, then this
optimal strategy leads to an expected total cost

V1(P, Stot) = PStot +
θ

2
(1 +

1
N

)S2
tot.

There’s something unusual about this conclusion. The investor’s optimal strategy is not
influenced by the random fluctuations of the prices. It’s always the same, and can be fixed
in advance. That’s extremely unusual in stochastic control problems: the optimal control
can usually be chosen as a feedback control, i.e. a deterministic function of the state – but
since the state depends on the fluctuations, so does the control.

I warned you it was easy to criticize this model. Some comments:

1. The variance of the noise in the price model never entered our analysis. That’s because
our hypothetical investor is completely insensitive to risk – he cares only about the
expected result, not about its variance. No real investor is like this.

2. The price law (1) is certainly wrong: it has the ith trade Si increasing not just the ith
price Pi but also every subsequent price. A better law would surely make the impact
of trading temporary. Bertismas and Lo consider one such law, for which the problem
still has a closed-form solution derived by methods similar to those used above.

The take-home message: Discrete-time stochastic dynamic programming is easy and fun. Of
course a closed-form solution isn’t always available. When there is no closed-form solution
one must work backward in time numerically. The hardest part of the whole thing is keeping
your indices straight, and remembering which information is known at time i, and which is
random.

4



****************************

Example 2: When to sell an asset. This is an optimal stopping problem, analogous to
Example 2 of Section 6. My discussion follows Section 2.4 of Bertsekas.

The problem is this: you have an asset (e.g. a house) you wish to sell. One offer arrives
each week (yes, this example is oversimplified). The offers are independent draws from a
single, known distribution. You must sell the house by the end of N weeks. If you sell it
earlier, you’ll invest the cash (risk-free), and its value will increase by factor (1 + r) each
week. Your goal is to maximize the expected present value of the cash generated by the
sale. We shall ignore transaction costs.

The control, of course, is the decision (taken each week) to sell or not to sell. The value
function is

Vi(w) = expected present-value at week i of current and future sales, if the house
is still unsold, the current week is i, and the current offer is w.

We start as usual with the final time, i = N . If the house isn’t already sold you have no
choice but to sell it, realizing

VN (w) = w.

The key to working backward is the principle of dynamic programming, which in this setting
says:

Vi(w) = max
{
w, (1 + r)−1E[Vi+1(w′)]

}
.

Here w′ is an independent trial from the specified distribution (the next week’s offer); the
first choice corresponds to the decision “sell now”, the second choice to the decision “don’t
sell now”.

The optimal decision in week i is easily seen to be:

accept offer w if w ≥ αi

reject offer w if w ≤ αi

with
αi = (1 + r)−1E[Vi+1(w′, n)].

To complete the solution to the problem we must find the sequence of real numbers α0, . . . αN−1.
Since

Vi+1(w,n) =

{
w if w > αi+1

αi+1 if w ≤ αi+1

we have

αi =
1

1 + r

∫ αi+1

0
αi+1 dP (w) +

1
1 + r

∫ ∞

αi+1

w dP (w)

=
1

1 + r
αi+1P (αi+1) +

1
1 + r

∫ ∞

αi+1

w dP (w)

5



where P (λ) = prob{w < λ} is the distribution function of w. This relation, with the
initialization αN = 0, permits one to calculate the α’s one by one (numerically). It can be
shown that they are monotone in i: α0 > α1 > . . . (see Bertsekas). This is natural, since
early in the sales process it makes no sense to take a low offer, but later on it may be a
good idea to avoid being forced to take a still lower one on week N . One can also show
that after many steps of the recursion relation for αi, the value of αi approaches the fixed
point α∗ which solves

α∗ =
1

1 + r
α∗P (α∗) +

1
1 + r

∫ ∞

α∗
w dP (w).

Thus when the horizon is very far away, the optimal policy is to reject offers below α∗ and
accept offers above α∗.

Let’s compare this discussion to Example 2 in Section 6. There we assumed lognormal
dynamics (making the PDE easy to solve by hand) and considered the case where there
was no deadline. Had we used some other SDE the PDE might have been harder to solve
explicitly; had we imposed a deadline the value function would have become time-dependent
and we would have been forced to solve for it numerically. Our discrete-time version includes
both difficulties (an arbitrary probability distribution for offers, and a time-dependent value
function). Therefore it must be solved numerically. But since time is intrinsically discrete,
there are no technicalities such as discretization of the HJB equation.

*********************

Least-square replication of a European option. This discussion follows the paper D.
Bertsimas, L. Logan, and A.W. Lo: Hedging derivative securities and incomplete markets:
an ε-arbitrage approach, Operations Research 49 (2001) 372-397. (Downloadable from An-
drew Lo’s web site. Search Google for Andrew Lo MIT to get there.) The paper is quite
rich; I focus for specificity on the simplest case, when the returns at different times are
independent trials from a single probability distribution. However you’ll see as we go along
that this hypothesis isn’t really being used; the method is actually much more general. (I’ll
comment on its scope at the end.)

Here’s the problem. Consider a stock that can be traded only at discrete times j∆t, and
suppose its price Pj at the jth time satisfies

Pj = Pj−1(1 + φj−1) (2)

where φj−1 is chosen from a specified distribution, independent of j. (The discrete-time
analogue of standard lognormal dynamics is obtained by taking log(1+φj) = µ∆t+σ

√
∆te

where e is Gaussian with mean 0 and variance 1.) You are an investment banker, and at
time j = 0 you sell an option with maturity N and payout F (PN ), receiving cash V0 in
payment. Your goal is to invest this cash wisely, trading in a self-financing way, so the value
at the final time comes as close as possible to replicating the payout F (PN ).

The state at time j is

Vj = the value of your portfolio at time j, and
Pj = the price at which trades can be made at time j.

6



We suppose that on each day, knowing Vj and Pj (but not the next day’s price Pj+1)
you make a decision how to rebalance your portfolio, buying or selling at price Pj till you
hold θj units of stock and Bj units of cash. Thus θj is the control. Each trade must be
“self-financing.” To understand what this means, observe that going into the jth day your
portfolio is worth

θj−1Pj + Bj−1

while after rebalancing it is worth
θjPj + Bj .

For the trade to be self-financing these two expressions must be equal; this gives the re-
striction

Pj(θj − θj−1) + (Bj − Bj−1) = 0.

Since the value of your portfolio on the jth day is

Vj = θjPj + Bj,

the value changes from day to day by the law

Vj − Vj−1 = θj−1(Pj − Pj−1).

We interpret the goal of replicating the payout “as well as possible” in a least-square sense:
your aim is to choose the θj’s so as to

minimize E
[
(VN − F (PN ))2

]
.

This time it is fairly obvious how to fit the problem into the dynamic programming frame-
work. At time i the value function is

Ji(V, P ) = min
θi,...,θN−1

EVi=V, Pi=P

[
|VN − F (PN )|2

]
.

The final-time condition is
JN (V, P ) = |V − F (P )|2

since on day N there is no decision to be made. The principle of dynamic programming
gives

Ji(V, P ) = min
θi

EPi=P [Ji+1(V + θi(Pi+1 − Pi), Pi+1)] .

Now a small miracle happens (this is the advantage of the least-square formulation): the
value function is, at each time, a quadratic polynomial in V , with coefficients which are
computable functions of P . In fact:

Claim: The value functions have the form

Ji(Vi, Pi) = ai(Pi)|Vi − bi(Pi)|2 + ci(Pi)

and the optimal control θi is given by a feedback law that’s linear in Vi:

θi(Vi, Pi) = pi(Pi) − Viqi(Pi).

7



The functions pi, qi, ai, bi, and ci are determined inductively by the following explicit for-
mulas:

pi(Pi) =
E [ai+1(Pi+1) · bi+1(Pi+1) · (Pi+1 − Pi)]

E [ai+1(Pi+1) · (Pi+1 − Pi)2]

qi(Pi) =
E [ai+1(Pi+1) · (Pi+1 − Pi)]
E [ai+1(Pi+1) · (Pi+1 − Pi)2]

ai(Pi) = E
[
ai+1(Pi+1) · [1 − qi(Pi)(Pi+1 − Pi)]2

]
bi(Pi) =

1
ai(Pi)

E [ai+1(Pi+1) · [bi+1(Pi+1) − pi(Pi)(Pi+1 − Pi)] · [1 − qi(Pi)(Pi+1 − Pi)]]

ci(Pi) = E [ci+1(Pi+1)] − ai(Pi) · bi(Pi)2 + E
[
ai+1(Pi+1) · [bi+1(Pi+1) − pi(Pi)(Pi+1 − Pi)]2

]
where all expectations are over the uncertainties associated with passage from time i to
i + 1. These relations can be solved backward in time, starting from time N , using the
initialization

aN (PN ) = 1, bN (PN ) = F (PN ), cN (PN ) = 0.

Play before work. Let’s explore the impact of the claim.

Main consequence: The price you charged for the option – V0 – never enters the analysis.
But of course it’s not irrelevant! If you charged V0 for the option and the day-0 price was
P0, then your expected replication error is J0(V0, P0) = a0(P0)|V0 − b0(P0)|2 + c0(P0). The
first term is always positive, so the price that minimizes the replication error is V0 = b0(P0).

Is V0 = b0(P0) necessarily the market price of the option? Not so fast! This would be so – by
the usual absence-of-arbitrage argument – if c0(P0) were zero, since in that case the payout
is exactly replicatable. However in general c0(P0) is positive. (It is clearly nonnegative,
since the mean-square replication error is nonnegative no matter what the value of V0. It
is generally positive, due to market incompleteness: even the Black-Scholes marketplace is
not complete in the discrete-time setting.) If c0 is small then the price of the option should
surely be close to b0. However there is no logical reason why it should be exactly b0. For
example, the sign of the replication error VN −F (PN ) makes a great deal of difference to the
seller (and to buyer) of the option, but it did not enter our discussion. Moreover there is no
reason a specific investor should accept the quadratic replication error as the appropriate
measure of risk.

What about the Black-Scholes marketplace, where the classical Black-Scholes-Merton anal-
ysis tells us how to price and hedge an option? That analysis is correct, of course, but
it requires trading continuously in time. If you can trade only at discrete times j∆t then
the market is no longer complete and options are not exactly replicatable. If you use the
optimal trading strategy determined in our Claim, your mean-square replication error will
be smaller than the value obtained by using the continuous-time Black-Scholes hedging
strategy (which sets θj = ∂V/∂P evaluated at P = Pj and t = j∆t, where V solves the
Black-Scholes PDE). How much smaller? This isn’t quite clear, at least not to me. The

8



paper by Bertsimas-Logan-Lo does show, however, that the discrete-time results converge
to those of the continuous-time analysis as ∆t → 0.

OK, now work. We must justify the claim. Rather than do a formal induction, let us simply
explain the first step: why the formulas are correct when i = N − 1. This has all the ideas
of the general case, and the notation is slightly simpler since in this case ai+1 = aN = 1.
The principle of dynamic programming gives

JN−1(VN−1, PN−1) = min
θN−1

E
[
|VN−1 + θN−1(PN − PN−1) − F (PN )|2

]
.

Simplifying the notation, let us write the right hand side as

min
θ

E
[
|V + θδP − F |2

]
, (3)

bearing in mind that δP = PN − PN−1 and F = F (PN ) are random variables, and V and
θ are deterministic constants.

Identification of the optimal θ is essentially a task of linear algebra, since

〈ξ, η〉 = E [ξη]

is an inner product on the vector space of random variables. We need to view the constant
function V as a random variable; let us do this by writing it as V 1 where V is scalar and
1 is the random variable which always takes the value 1. Then (3) can be written as

min
θ

‖V 1 + θδP − F‖2

where ‖ξ‖2 = 〈ξ, ξ〉 = E[ξ2]. Decomposing 1 and F into the parts parallel and orthogonal
to δP , we have

1 = (1 − qδP ) + qδP with q = 〈1, δP 〉‖δP‖−2

and
F = (F − pδP ) + pδP with p = 〈F, δP 〉‖δP‖−2 ,

and

‖V 1 + θδP − F‖2 = ‖V (1 − qδP ) − (F − pδP ) + (θ + V q − p)δP‖2

= ‖V (1 − qδP ) − (F − pδP )‖2 + (θ + V q − p)2‖δP‖2.

The optimal θ makes the second term vanish: θ = p − V q, and the resulting value is

V 2‖1 − qδP‖2 − 2V 〈1 − qδP, F − pδP 〉 + ‖F − pδP‖2

This is, as expected, a quadratic polynomial in V , which can be written in the form a(V −
b)2 + c. Expressing p, q, a, b and c in the original probabilistic notation gives precisely the
formulas of the Claim with i = N − 1. The general inductive step is entirely similar.

Let’s close by discussing the scope of this method. The case considered above – returns that
are independent and identically distributed at each time step – is already of real interest. It

9



includes the time discretization of the standard Black-Scholes marketplace, but it is much
more general. For example, it can also be used to model a stock whose price process has
jumps (see Section 3.3 of Bertsimas-Logan-Lo).

Moreover the framework is by no means restricted to the case of such simple price dynamics.
All one really needs is that (i) the price is determined by a Markov process, and (ii) the
payout at maturity depends on the final state of this process. Thus the same framework
can be used for problems as diverse as:

• An exotic option whose payout is the maximum stock price between times 0 and N .
Just replace the stock price process Pj with the process (Pj ,Mj) = (price at time j,
max price through time j), defined by

Pj = Pj−1(1 + φj−1), Mj = max{Pj ,Mj−1}

and replace the payout F (PN ) by one of the form F (MN ).

• Stochastic volatility. Just replace the stock price process Pj with a process (Pj , σj)
= (price at time j, volatility at time j), with the time-discretization of your favorite
stochastic-volatility model as the dynamics. The payout would, in this case, still have
the form F (PN ).

10


