
PDE for Finance, Spring 2003 – Homework 6
Distributed 4/21/03, due 5/5/03. Includes a hint for problem 4.

1) This problem develops a continuous-time analogue of the simple Bertsimas & Lo model
of “Optimal control of execution costs” presented in the Section 7 notes. The state is (w, p),
where w is the number of shares yet to be purchased and p is the current price per share.
The control α(s) is the rate at which shares are purchased. The state equation is:

dw = −α ds for t < s < T , w(t) = w0

dp = θα ds + σdz for t < s < T , p(t) = p0

where dz is Brownian motion and θ, σ are fixed constants. The goal is to minimize, among
(nonanticipating) controls α(s), the expected cost

E

{∫ T

t
[p(s)α(s) + θα2(s)] ds + [p(T )w(T ) + θw2(T )]

}
.

The optimal expected cost is the value function u(w0, p0, t).

(a) Show that the HJB equation for u is

ut + H(uw, up, p) +
σ2

2
upp = 0

for t < T , with Hamiltonian

H(uw, up, p) = − 1
4θ

(p + θup − uw)2.

The final value is of course

u(w, p, T ) = pw + θw2.

(b) Look for a solution of the form u(w, p, t) = pw + g(t)w2. Show that g solves

ġ =
1
4θ

(θ − 2g)2

for t < T , with g(T ) = θ. Notice that u does not depend on σ, i.e. setting σ = 0 gives
the same value function.

(c) Solve for g. (Hint: start by rewriting the equation for g, “putting all the g’s on the
left and all the t’s on the right”.)

(d) Show by direct examination of your solution that the optimal α(s) is constant.

(Food for thought: what happens if one takes the running cost to be
∫ T
t p(s)α(s) ds instead

of
∫ T
t p(s)α(s) + θα2(s) ds?)
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2) The Section 7 notes discuss work by Bertsimas, Kogan, and Lo involving least-square
replication of a European option. The analysis there assumes all trades are self-financing,
so the value of the portfolio at consecutive times is related by

Vj − Vj−1 = θj−1(Pj − Pj−1).

Let’s consider what happens if trades are permitted to be non-self-financing. This means
we introduce an additional control gj , the amount of cash added to (if gj > 0) or removed
from (if gj < 0) the portfolio at time j, and the portfolio values now satisfy

Vj − Vj−1 = θj−1(Pj − Pj−1) + gj−1.

It is natural to add a quadratic expression involving the g’s to the objective: now we seek
to minimize

E


(VN − F (PN ))2 + α

N−1∑
j=0

g2
j




where α is a positive constant. The associated value function is

Ji(V, P ) = min
θi,gi;...;θN−1,gN−1

EVi=V, Pi=P


(VN − F (PN ))2 + α

N−1∑
j=i

g2
j


 .

The claim enunciated in the Section 7 notes remains true in this modified setting: Ji can
be expressed as a quadratic polynomial

Ji(Vi, Pi) = āi(Pi)|Vi − b̄i(Pi)|2 + c̄i(Pi)

where āi, b̄i, and c̄i are suitably-defined functions which can be constructed inductively.
Demonstrate this assertion in the special case i = N −1, and explain how āN−1, b̄N−1, c̄N−1

are related to the functions aN−1, bN−1, cN−1 of the Section 7 notes.

3) Consider scaled Brownian motion with drift, dy = µdt + σdw, starting at y(0) = 0. The
solution is of course y = µt + σw(t), so its probability distribution at time t is Gaussian
with mean µt and variance σ2t. Show that solution p̂(ξ, t) obtained by Fourier transform
in the Section 8 notes is consistent with this result.

4) Consider scaled Brownian motion with drift and jumps: dy = µdt+σdw+JdN , starting
at y(0) = 0. Assume the jump occurences are Poisson with rate λ, and the jump magnitudes
J are Gaussian with mean 0 and variance δ2. Find the probability distribution of the process
y at time t. (Hint: don’t try to use the Fourier transform. Instead observe that you know,
for any n, the probability that n jumps will occur before time t; and after conditioning on
the number of jumps, the distribution of y is a Gaussian whose mean and variance are easy
to determine. Assemble these ingredients to give the density of y as an infinite sum.)
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