PDE for Finance, Spring 2003 — Homework 6
Distributed 4/21/03, due 5/5/03. Includes a hint for problem 4.

1) This problem develops a continuous-time analogue of the simple Bertsimas & Lo model
of “Optimal control of execution costs” presented in the Section 7 notes. The state is (w, p),
where w is the number of shares yet to be purchased and p is the current price per share.
The control «(s) is the rate at which shares are purchased. The state equation is:

dw = —adsfort<s<T, w(t)=uw
dp = Oads+odzfort<s<T, p(t)=po

where dz is Brownian motion and 6, o are fixed constants. The goal is to minimize, among
(nonanticipating) controls «(s), the expected cost

T
E {/t [p(s)a(s) + 0a?(s)] ds + [p(T)w(T) + GwQ(T)]} .

The optimal expected cost is the value function u(wq, po,t).

(a) Show that the HIB equation for u is
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ug + H (), up, p) + 5 Upp = 0

for t < T, with Hamiltonian

The final value is of course

w(w,p,T) = pw + fw’.

(b) Look for a solution of the form u(w, p,t) = pw + g(t)w?. Show that g solves
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for t < T, with g(T') = 6. Notice that u does not depend on o, i.e. setting o = 0 gives
the same value function.

(c) Solve for g. (Hint: start by rewriting the equation for g, “putting all the g’s on the
left and all the ¢’s on the right”.)

(d) Show by direct examination of your solution that the optimal a(s) is constant.

(Food for thought: what happens if one takes the running cost to be ftT p(s)a(s) ds instead
of ftTp(s)a(s) + 0a?(s) ds?)



2) The Section 7 notes discuss work by Bertsimas, Kogan, and Lo involving least-square
replication of a European option. The analysis there assumes all trades are self-financing,
so the value of the portfolio at consecutive times is related by

Vi = Vi1 =0;1(P; = Pj-1).

Let’s consider what happens if trades are permitted to be non-self-financing. This means
we introduce an additional control g;, the amount of cash added to (if g; > 0) or removed
from (if g; < 0) the portfolio at time j, and the portfolio values now satisfy

Vi= Vi1 =0;1(F = Pj1) + gj-1.

It is natural to add a quadratic expression involving the g’s to the objective: now we seek
to minimize

E|(Vi = F(P)* +a Y g

where « is a positive constant. The associated value function is

N-1
Ji(V,P) = min Ey—v.p=p | (Vv — F(PN))*+a ) g;
Jj=t
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The claim enunciated in the Section 7 notes remains true in this modified setting: J; can
be expressed as a quadratic polynomial

Ji(Vi, P) = @i(P)|Vi — by (P)|* + &(P)

where @;,b;, and ¢ are suitably-defined functions which can be constructed inductively.
Demonstrate this assertion in the special case 1 = N — 1, and explain how ay_1,by_1,Cn_1
are related to the functions ay_1,by_1,cny_1 of the Section 7 notes.

3) Consider scaled Brownian motion with drift, dy = pdt + odw, starting at y(0) = 0. The
solution is of course y = ut + ow(t), so its probability distribution at time ¢ is Gaussian
with mean ut and variance o?t. Show that solution p(&,t) obtained by Fourier transform
in the Section 8 notes is consistent with this result.

4) Consider scaled Brownian motion with drift and jumps: dy = pdt + odw + JdN, starting
at y(0) = 0. Assume the jump occurences are Poisson with rate A\, and the jump magnitudes
J are Gaussian with mean 0 and variance 6?. Find the probability distribution of the process
y at time t. (Hint: don’t try to use the Fourier transform. Instead observe that you know,
for any n, the probability that n jumps will occur before time ¢; and after conditioning on
the number of jumps, the distribution of y is a Gaussian whose mean and variance are easy
to determine. Assemble these ingredients to give the density of y as an infinite sum.)



