PDE for Finance, Spring 2003 - Homework 6

Distributed 4/21/03, due 5/5/03. Includes a hint for problem 4.

1) This problem develops a continuous-time analogue of the simple Bertsimas \& Lo model of "Optimal control of execution costs" presented in the Section 7 notes. The state is (w, p), where w is the number of shares yet to be purchased and p is the current price per share. The control $\alpha(s)$ is the rate at which shares are purchased. The state equation is:

$$
\begin{aligned}
d w & =-\alpha d s \text { for } t<s<T, \quad w(t)=w_{0} \\
d p & =\theta \alpha d s+\sigma d z \text { for } t<s<T, \quad p(t)=p_{0}
\end{aligned}
$$

where $d z$ is Brownian motion and θ, σ are fixed constants. The goal is to minimize, among (nonanticipating) controls $\alpha(s)$, the expected cost

$$
E\left\{\int_{t}^{T}\left[p(s) \alpha(s)+\theta \alpha^{2}(s)\right] d s+\left[p(T) w(T)+\theta w^{2}(T)\right]\right\}
$$

The optimal expected cost is the value function $u\left(w_{0}, p_{0}, t\right)$.
(a) Show that the HJB equation for u is

$$
u_{t}+H\left(u_{w}, u_{p}, p\right)+\frac{\sigma^{2}}{2} u_{p p}=0
$$

for $t<T$, with Hamiltonian

$$
H\left(u_{w}, u_{p}, p\right)=-\frac{1}{4 \theta}\left(p+\theta u_{p}-u_{w}\right)^{2}
$$

The final value is of course

$$
u(w, p, T)=p w+\theta w^{2}
$$

(b) Look for a solution of the form $u(w, p, t)=p w+g(t) w^{2}$. Show that g solves

$$
\dot{g}=\frac{1}{4 \theta}(\theta-2 g)^{2}
$$

for $t<T$, with $g(T)=\theta$. Notice that u does not depend on σ, i.e. setting $\sigma=0$ gives the same value function.
(c) Solve for g. (Hint: start by rewriting the equation for g, "putting all the g 's on the left and all the t 's on the right".)
(d) Show by direct examination of your solution that the optimal $\alpha(s)$ is constant.
(Food for thought: what happens if one takes the running cost to be $\int_{t}^{T} p(s) \alpha(s) d s$ instead of $\left.\int_{t}^{T} p(s) \alpha(s)+\theta \alpha^{2}(s) d s ?\right)$
2) The Section 7 notes discuss work by Bertsimas, Kogan, and Lo involving least-square replication of a European option. The analysis there assumes all trades are self-financing, so the value of the portfolio at consecutive times is related by

$$
V_{j}-V_{j-1}=\theta_{j-1}\left(P_{j}-P_{j-1}\right) .
$$

Let's consider what happens if trades are permitted to be non-self-financing. This means we introduce an additional control g_{j}, the amount of cash added to (if $g_{j}>0$) or removed from (if $g_{j}<0$) the portfolio at time j, and the portfolio values now satisfy

$$
V_{j}-V_{j-1}=\theta_{j-1}\left(P_{j}-P_{j-1}\right)+g_{j-1} .
$$

It is natural to add a quadratic expression involving the g 's to the objective: now we seek to minimize

$$
E\left[\left(V_{N}-F\left(P_{N}\right)\right)^{2}+\alpha \sum_{j=0}^{N-1} g_{j}^{2}\right]
$$

where α is a positive constant. The associated value function is

$$
J_{i}(V, P)=\min _{\theta_{i}, g_{i} \ldots \ldots ; \theta_{N-1}, g_{N-1}} E_{V_{i}=V, P_{i}=P}\left[\left(V_{N}-F\left(P_{N}\right)\right)^{2}+\alpha \sum_{j=i}^{N-1} g_{j}^{2}\right]
$$

The claim enunciated in the Section 7 notes remains true in this modified setting: J_{i} can be expressed as a quadratic polynomial

$$
J_{i}\left(V_{i}, P_{i}\right)=\bar{a}_{i}\left(P_{i}\right)\left|V_{i}-\bar{b}_{i}\left(P_{i}\right)\right|^{2}+\bar{c}_{i}\left(P_{i}\right)
$$

where \bar{a}_{i}, \bar{b}_{i}, and \bar{c}_{i} are suitably-defined functions which can be constructed inductively. Demonstrate this assertion in the special case $i=N-1$, and explain how $\bar{a}_{N-1}, \bar{b}_{N-1}, \bar{c}_{N-1}$ are related to the functions $a_{N-1}, b_{N-1}, c_{N-1}$ of the Section 7 notes.
3) Consider scaled Brownian motion with drift, $d y=\mu d t+\sigma d w$, starting at $y(0)=0$. The solution is of course $y=\mu t+\sigma w(t)$, so its probability distribution at time t is Gaussian with mean μt and variance $\sigma^{2} t$. Show that solution $\hat{p}(\xi, t)$ obtained by Fourier transform in the Section 8 notes is consistent with this result.
4) Consider scaled Brownian motion with drift and jumps: $d y=\mu d t+\sigma d w+J d N$, starting at $y(0)=0$. Assume the jump occurences are Poisson with rate λ, and the jump magnitudes J are Gaussian with mean 0 and variance δ^{2}. Find the probability distribution of the process y at time t. (Hint: don't try to use the Fourier transform. Instead observe that you know, for any n, the probability that n jumps will occur before time t; and after conditioning on the number of jumps, the distribution of y is a Gaussian whose mean and variance are easy to determine. Assemble these ingredients to give the density of y as an infinite sum.)

