
PDE for Finance, Spring 2003 – Homework 5
Distributed 4/7/03, due 4/21/03.

Problem 1 is a classic example (due to Merton) of optimal asset allocation. Problems 2-4
reinforce our discussion of optimal stopping and American options. Problem 5 displays the
power of dynamic programming for solving a different type of optimal stopping problem
(one that’s intrinsically discrete).

1) Consider the following asset-allocation problem. Two investment opportunities are avail-
able. One is risk-free, earning (constant) interest r. The other is lognormal, with (constant)
drift µ and volatility σ, i.e. it satisfies dp = µpds + σpdw. You start at time t by investing
wealth x. Your control is the weighting of your portofolio between these two assets, i.e.

α(s) = fraction of wealth invested in the risky asset at time s

subject to 0 ≤ α ≤ 1. You never withdraw from or add to the portfolio, and you have a
fixed horizon T . Your goal is to maximize the utility of your portfolio value at time T ; in
other words, your value function is

u(x, t) = max
α(s)

Ey(t)=x [h(y(T ))]

where y(s) is the value of the portfolio at time s.

(a) Find the HJB equation satisfied by u.

(b) Find the solution – and the optimal investment strategy – if your utility is h(y) = yγ

with 0 < γ < 1.

(c) Find the solution – and the optimal investment strategy – if your utility is h(y) = log y.

2) Example 2 of the Section 6 notes discusses when to sell a stock. The goal proposed in
the notes was to maximize the discounted wealth realized by the sale, i.e.

max
τ

Ey(0)=x

[
e−rτ (x − a)

]

A different goal would be to maximize the discounted utility of wealth realized by the sale,
i.e.

max
τ

Ey(0)=x

[
e−rτh(x − a)

]

where h is your utility.

(a) Consider the utility h(y) = yγ with 0 < γ < 1. (This is concave only for y > 0, but
that’s OK – it would clearly be foolish to sell at a price that realizes a loss.) Find the
value function and the optimal strategy.

(b) The example in the notes corresponds to γ = 1. Using γ < 1 corresponds to intro-
ducing risk-averseness, and decreasing γ corresponds to increasing the risk-averseness.
How is this reflected in the γ-dependence of the optimal strategy?
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3) In Example 2 of the Section 6 notes we assumed µ < r. Let’s explore what happens
when µ ≥ r. All other conventions of Example 2 remain in effect: the asset price satisfies
dy = µydt + σydw and the value function is u(x) = maxτ Ey(0)=x[e−rτ (y(τ) − a)].

(a) Show that if µ > r then u = ∞.

(b) Show that if µ = r then u(x) = x.

(Hint: consider the value associated with sales threshold h, as h → ∞.)

4) For a lognormal underlying with continuous dividend yield d, the risk-neutral process is
dy = (r − d)ydt + σydw. The value of a perpetual American call with strike K is thus

u(x) = max
τ

Ey(0)=x

[
e−rτ (y(τ) − K)+

]

where r is the risk-free rate.

(a) Find the value of this option, and the optimal exercise rule, for d > 0.

(b) Show that as d → 0 the value approaches u(x) = x.

5) [from Dimitri Bertsekas, Dynamic Programming: Deterministic and Stochastic Models,
Chapter 2, problem 19]. A driver is looking for a parking place on the way to his destination.
Each parking place is free with probability p, independent of whether other parking spaces
are free or not. The driver cannot observe whether a parking place is free until he reaches
it. If he parks k places from his destination, he incurs a cost k. If he reaches the destination
without having parked the cost is C.

(a) Let Fk be the minimal expected cost if he is k parking places from his destination.
Show that

F0 = C

Fk = p min[k, Fk−1] + qFk−1, k = 1, 2, . . .

where q = 1 − p.

(b) Show that an optimal policy is of the form: never park if k ≥ k∗, but take the first
free place if k < k∗, where k is the number of parking places from the destination,
and k∗ is the smallest integer i satisfying qi−1 < (pC + q)−1.
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