
PDE for Finance, Spring 2003 { Homework 3
Distributed 3/3/03, due 3/24/03.

1) Consider the linear heat equation ut� uxx = 0 on the interval 0 < x < 1, with boundary
condition u = 0 at x = 0; 1 and initial condition u = 1.

(a) Interpret u as the value of a suitable double-barrier option.

(b) Express u(t; x) as a Fourier sine series, as explained in Section 3.

(c) At time t = 1=100, how many terms of the series are required to give u(t; x) within
one percent accuracy?

2) Consider the SDE dy = f(y)dt+ g(y)dw. Let G(x; y; t) be the fundamental solution of
the forward Kolmogorov PDE, i.e. the probability that a walker starting at x at time 0 is
at y at time t. Show that if the in�nitesimal generator is self-adjoint, i.e.

�(fu)x +
1

2
(g2u)xx = fux +

1

2
g2uxx;

then the fundamental solution is symmetric, i.e. G(x; y; t) = G(y; x; t).

3) Consider the stochastic di�erential equation dy = f(y; s)ds+g(y; s)dw, and the associated
backward and forward Kolmogorov equations

ut + f(x; t)ux +
1

2
g2(x; t)uxx = 0 for t < T , with u = � at t = T

and

�s + (f(z; s)�)z �
1

2
(g2(z; s)�)zz = 0 for s > 0, with �(z) = �0(z) at s = 0:

Recall that u(x; t) is the expected value (starting from x at time t) of payo� �(y(T )),
whereas �(z; s) is the probability distribution of the di�using state y(s) (if the initial dis-
tribution is �0).

(a) The solution of the backward equation has the following property: if m = minz �(z)
and M = maxz �(z) then m � u(x; t) � M for all t < T . Give two distinct justi�ca-
tions: one using the maximum principle for the PDE, the other using the probabilistic
interpretation.

(b) The solution of the forward equation does not in general have the same property; in
particular, maxz �(z; s) can be larger than the maximum of �0. Explain why not, by
considering the example dy = �yds. (Intuition: y(s) moves toward the origin; in
fact, y(s) = e�sy0. Viewing y(s) as the position of a moving particle, we see that
particles tend to collect at the origin no matter where they start. So �(z; s) should be
increasingly concentrated at z = 0.) Show that the solution in this case is �(z; s) =
es�0(e

sz). This counterexample has g = 0; can you also give a counterexample using
dy = �yds+ �dw?
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4) The solution of the forward Kolmogorov equation is a probability density, so we expect
it to be nonnegative (assuming the initial condition �0(z) is everywhere nonnegative). In
light of Problem 2b it's natural to worry whether the PDE has this property. Let's show
that it does.

(a) Consider the initial-boundary-value problem

wt = a(x; t)wxx + b(x; t)wx + c(x; t)w

with x in the interval (0; 1) and 0 < t < T . We assume as usual that a(x; t) > 0.
Suppose furthermore that c < 0 for all x and t. Show that if 0 � w �M at the initial
time and the spatial boundary then 0 � w � M for all x and t. (Hint: a positive
maximum cannot be achieved in the interior or at the �nal boundary. Neither can a
negative minimum.)

(b) Now consider the same PDE but with maxx;t c(x; t) positive. Suppose the initial and
boundary data are nonnegative. Show that the solution w is nonnegative for all x and
t. (Hint: apply part (a) not to w but rather to �w = e�Ctw with a suitable choice of
C.)

(c) Consider the solution of the forward Kolmogorov equation in the interval, with � = 0
at the boundary. (It represents the probability of arriving at z at time s without
hitting the boundary �rst.) Show using part (b) that �(z; s) � 0 for all s and z.

[Comment: statements analogous to (a)-(c) are valid for the initial-value problem as well,
when we solve for all x 2 R rather than for x in a bounded domain. The justi�cation takes
a little extra work however, and it requires some hypothesis on the growth of the solution
at 1.]

5) Consider the solution of

ut + auxx = 0 for t < T , with u = � at t = T

where a is a positive constant. Recall that in the stochastic interpretation, a is 1

2
g2 where g

represents volatility. Let's use the maximum principle to understand qualitatively how the
solution depends on volatility.

(a) Show that if �xx � 0 for all x then uxx � 0 for all x and t. (Hint: di�erentiate the
PDE.)

(b) Suppose �u solves the analogous equation with a replaced by �a > a, using the same
�nal-time data �. We continue to assume that �xx � 0. Show that �u � u for all x
and t. (Hint: w = �u� u solves wt + �awxx = f with f = (a� �a)uxx � 0.)

6) Consider the standard �nite di�erence scheme

u((m+ 1)�t; n�x)� u(m�t; n�x)

�t
=

u(m�t; (n+ 1)�x)� 2u(m�t; n�x) + u(m�t; (n� 1)�x)

(�x)2

(1)
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for solving ut � uxx = 0. The stability restriction �t < 1

2
�x2 leaves a lot of freedom in the

choice of �x and �t. Show that

�t =
1

6
�x2

is special, in the sense that the numerical scheme (1) has errors of order �x4 rather than
�x2. In other words: when u is the exact solution of the PDE, the left and right sides
of (1) di�er by a term of order �x4. [Comment: the argument sketched in the Section 3
Addendum shows that if u solves the PDE and v solves the �nite di�erence scheme then
ju� vj is of order �x2 in general, but it is smaller { of order �x4 { when �t = 1

6
�x2.]
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