
PDE for Finance, Spring 2003 { Homework 2
Distributed 2/10/03, due 2/24/03.

1) Consider the linear heat equation ut�uxx = 0 in one space dimension, with discontinuous
initial data

u(x; 0) =

(
0 if x < 0
1 if x > 0.

(a) Show by evaluating the solution formula that

u(x; t) = N

�
xp
2t

�
(1)

where N is the cumulative normal distribution

N(z) =
1p
2�

Z z

�1
e�s

2=2 ds:

(b) Explore the solution by answering the following: what is maxx ux(x; t) as a func-
tion of time? Where is it achieved? What is minx ux(x; t)? For which x is ux >
(1=10)maxx ux? Sketch the graph of ux as a function of x at a given time t > 0.

(c) Show that v(x; t) =
R x
�1 u(z; t) dz solves vt � vxx = 0 with v(x; 0) = maxfx; 0g.

Deduce the qualitative behavior of v(x; t) as a function of x for given t: how rapidly
does v tend to 0 as x ! �1? What is the behavior of v as x ! 1? What is the
value of v(0; t)? Sketch the graph of v(x; t) as a function of x for given t > 0.

2) We showed, in the Section 2 notes, that the solution of

wt = wxx for t > 0 and x > 0, with w = 0 at t = 0 and w = � at x = 0

is

w(x; t) =

Z t

0

@G

@y
(x; 0; t� s)�(s) ds (2)

where G(x; y; s) is the probability that a random walker, starting at x at time 0, reaches
y at time s without �rst hitting the barrier at 0. (Here and throughout this problem set,
the random walker solves dy =

p
2dw, i.e. it executes the scaled Brownian whose backward

Kolmogorov equation is ut + uxx = 0.) Let's give an alternative demonstration of this fact,
following the line of reasoning at the end of the Section 1 notes.

(a) Express, in terms of G, the probability that the random walker (starting at x at time
0) hits the barrier before time t. Di�erentiate in t to get the probability that it hits
the barrier at time t. (This is known as the �rst passage time density).

(b) Use the forward Kolmogorov equation and integration by parts to show that the �rst
passage time density is @G

@y (x; 0; t).

(c) Deduce the formula (2).
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3) Give \solution formulas" for the following initial-boundary-value problems for the linear
heat equation

wt � wxx = 0 for t > 0 and x > 0

with the speci�ed initial and boundary conditions.

(a) w1 = 0 at x = 0; w1 = 1 at t = 0. Express your solution in terms of the function
u(x; t) de�ned in Problem 1.

(b) w2 = 0 at x = 0; w2 = (x�K)+ at t = 0, with K > 0. Express your solution in terms
of the function v(x; t) de�ned in Problem 1(c).

(c) w3 = 0 at x = 0; w3 = (x�K)+ at t = 0, with K < 0.

(d) w4 = 1 at x = 0; w4 = 0 at t = 0.

Interpret each as the expected payo� of a suitable barrier-type instrument, whose underlying
executes the scaled Brownian motion dy =

p
2dw with initial condition y(0) = x and an

absorbing barrier at 0. (Example: w1(x; T ) is the expected payo� of an instrument which
pays 1 at time T if the underlying has not yet hit the barrier and 0 otherwise.)

4) The Section 2 notes reduce the Black-Scholes PDE to the heat equation by brute-force
algebraic substitution. This problem achieves the same reduction by a probabilistic route.
Our starting point is the fact that

V (s; t) = e�r(T�t)Ey(t)=s [�(y(T )] (3)

where dy = rydt+ �ydw.

(a) Consider z = 1
� log y. By Ito's formula it satis�es dz = 1

� (r � 1
2�

2)dt + dw. Express
the right hand side of (3) as a discounted expected value with respect to z process.

(b) The z process is Brownian motion with drift � = 1
� (r � 1

2�
2). The Cameron-Martin-

Girsanov theorem tells how to write an expected value relative to z as a weighted
expected value relative to the standard Brownian motion w. Speci�cally:

Ez(t)=x [F (z(T ))] = Ew(t)=x

�
e�w(T )�

1
2�

2(T�t)F (w(T ))

�
(4)

where left side is an expectation using the path-space measure associated with z, and
the right hand side is an expectation using the path-space measure associated with
Brownian motion. Apply this to get an expression for V (s; t) whose right hand side
involves an expected value relative to Brownian motion.

(c) An expected payo� relative to Brownian motion is described by the heat equation
(more precisely by an equation of the form ut +

1
2uxx = 0). Thus (b) expresses the

solution of the Black-Scholes PDE in terms of a solution of the heat equation. Verify
that this representation is the same as the one given in the Section 2 notes.
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5) As noted in Problem 4(b), questions about Brownian motion with drift can often be
answered using the Cameron-Martin-Girsanov theorem. But we can also study this process
directly. Let's do so now, for the process dz = �dt+dw with an absorbing barrier at z = 0.

(a) Suppose the process starts at z0 > 0 at time 0. Let G(z0; z; t) be the probability that
the random walker is at position z at time t (and has not yet hit the barrier). Show
that

G(z0; z; t) =
1p
2�t

e�jz�z0��tj
2=2t � 1p

2�t
e�2�z0e�jz+z0��tj

2=2t:

(Hint: just check that this G solves the relevant forward Kolmogorov equation, with
the appropriate boundary and initial conditions.)

(b) Show that the �rst passage time density is

@G

@z
(z0; 0; t) =

2z0

t
p
2�t

e�jz0+�tj
2=2t:
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