PDE for Finance, Spring 2003 - Homework 1

Distributed 1/27/03, due 2/10/03.

1) Consider a diffusion $d y=f(y) d s+g(y) d w$, with initial condition $y(0)=x$. Suppose $u(x)$ solves the PDE

$$
f u_{x}+\frac{1}{2} g^{2} u_{x x}-q(x) u=0 \quad \text { for } a<x<b, \text { with } u=1 \text { at } x=a, b
$$

for some function $q(x)$. Show that

$$
u(x)=E_{y(0)=x}\left[e^{-\int_{0}^{\tau} q(y(s)) d s}\right]
$$

where τ is the exit time from $[a, b]$. (You should assume that $E[\tau]<\infty$.)
2) Consider the lognormal random walk

$$
d y=\mu y d y+\sigma y d w
$$

starting at $y(0)=x$. Assume $\mu \neq \frac{1}{2} \sigma^{2}$. The Section 1 notes examine the mean exit time from an interval $[a, b]$ where $0<a<x<b$. There we used the PDE for the mean exit time

$$
\begin{equation*}
\mu x u_{x}+\frac{1}{2} \sigma^{2} x^{2} u_{x x}=-1 \quad \text { for } a<x<b \tag{1}
\end{equation*}
$$

with boundary conditions $u(a)=u(b)=0$ to derive an explicit formula for u.
(a) Show that the general solution of (1), without taking any boundary conditions into account, is

$$
u=\frac{1}{\frac{1}{2} \sigma^{2}-\mu} \log x+c_{1}+c_{2} x^{\gamma}
$$

with $\gamma=1-2 \mu / \sigma^{2}$. Here c_{1} and c_{2} are arbitrary constants. [The formula given in the notes for the mean exit time is easy to deduce from this fact, by using the boundary conditions to solve for c_{1} and c_{2}; however you need not do this calculation as part of your homework.]
(b) Argue as in the notes to show that the mean exit time from the interval (a, b) is finite. (Hint: mimic the argument used to answer Question 3, using $\phi(y)=\log y$.)
(c) Let p_{a} be the probability that the process exits at a, and $p_{b}=1-p_{a}$ the probability that it exits at b. Give an equation for p_{a} in terms of the barriers a, b and the initial value x. (Hint: mimic the argument used in the answer to Question 4, using $\phi(y)=y^{\gamma}$.) How does p_{a} behave in the limit $a \rightarrow 0$?
3) Consider a diffusion $d y=f(y) d s+g(y) d w$ starting at x at time 0 , with $a<x<b$. Let τ be its exit time from the interval $[a, b]$, and assume $E[\tau]<\infty$.
(a) Let $u_{a}(x)$ be the probability it exits at a. Show that u_{a} solves $f u_{x}+\frac{1}{2} g_{2} u_{x x}=0$ with boundary conditions $u_{a}(a)=1, u_{a}(b)=0$.
(b) Apply this method to Problem 2(c). Is this approach fundamentally different from the one indicated by the hint above?
4) Consider once again a diffusion $d y=f(y) d s+g(y) d w$ starting at x at time 0 . We know the mean arrival time to the boundary $v(x)=E[\tau]$ satisfies $f v_{x}+\frac{1}{2} g^{2} v_{x x}=-1$ with $v=0$ at $x=a, b$. Now consider the second moment of the arrival time $h(x)=E\left[\tau^{2}\right]$. Show that it satisfies $f h_{x}+\frac{1}{2} g^{2} h_{x x}=-2 v(x)$, with $h=0$ at $x=a, b$.
5) Examine the analogues of Problem 2(a)-(c) when $\mu=\frac{1}{2} \sigma^{2}$. (Hint: notice that $x u_{x}+$ $x^{2} u_{x x}=u_{z z}$ with $z=\log x$.)
6) Let $w(t)$ be standard Brownian motion, starting at 0 . Let τ_{n} be the first time w exits from the interval $[-n, 1]$, and let τ_{∞} the the first time it reaches $w=1$.
(a) Find the expected value of τ_{n}, and the probability that the path exits $[-n, 1]$ at $-n$.
(b) Verify by direct evaluation that $w\left(\tau_{n}\right)$ has mean value 0 . (This must of course be true, since $E\left[\int_{0}^{\tau_{n}} d w=0\right]$ by Dynkin's theorem.)
(c) Conclude from (a) that $E\left[\tau_{\infty}\right]=\infty$.
(d) Show that τ_{∞} is almost-surely finite.

