PDE for Finance Final Exam Questions Spring 2003 – Professor Kohn

1) Give a probabilistic interpretation for the solution of each PDE. (You must justify your answer to receive full credit.)

- (a) $u_t + f(x)u_x + \frac{1}{2}g^2(x)u_{xx} = 0$ for t < T and $x \in R$, with final-time condition $u(x, T) = \phi(x)$.
- (b) $f(x)u_x + \frac{1}{2}g^2(x)u_{xx} = -1$ on the interval a < x < b, with u = 0 at the boundary points x = a, b.

2) This problem concerns the explicit solution formulas for the linear heat equation in a half-space and a bounded interval.

(a) The solution of

$$u_t = u_{xx}$$
 for $t > 0$ and $x > 1$, with $u = (x - 1)^3$ at $t = 0$ and $u = 0$ at $x = 1$

can be expressed as $u(x,t) = \frac{1}{\sqrt{4\pi t}} \int e^{-|x-y|^2/4t} \phi(y) \, dy$. What is $\phi(y)$?

(b) The solution of

 $u_t = u_{xx}$ for t > 0 and 0 < x < 1, with u = g(x) at t = 0 and u = 0 at x = 0, 1

can be expressed as $u(x,t) = \sum_{n=1}^{\infty} a_n(t) \sin(n\pi x)$. Find $a_n(t)$ in terms of g.

3) This problem concerns the arrival time at the boundary, for a random walker solving dy = fdt + gdw on the interval [a, b].

- (a) Let G(x, y, t) be the probability, starting from x at time 0, of being at y at time t without having yet hit the boundary. What version of the forward Kolmogorov equation does G solve?
- (b) Express, as an integral involving G_t , the "first passage time density to the boundary," i.e. the probability that the process, starting from a < x < b, first hits the boundary at time t.
- (c) Using your answers to (a) and (b) and some further manipulation, show that

first passage time density to the boundary
$$= -\frac{1}{2} \left. \frac{\partial}{\partial y} (g^2 G(x, y, t)) \right|_{y=b} + \frac{1}{2} \left. \frac{\partial}{\partial y} (g^2 G(x, y, t)) \right|_{y=a}$$

- 4) Consider the following version of the Merton asset allocation problem:
 - There is a risk-free asset, whose price satisfies $dp_1 = rp_1 ds$.
 - There are two risky assets, whose prices p_2 and p_3 satisfy $dp_i = \mu_i p_i ds + \sigma_i p_i dw_i$ for i = 2, 3. We assume for simplicity that w_2 and w_3 are independent Brownian motions.
 - Your controls are $\alpha_i(s) =$ the fraction of your wealth invested in asset *i* at time s, *i* = 1, 2, 3; note that $\alpha_1 + \alpha_2 + \alpha_3 = 1$.
 - There is no consumption, and your goal is to optimize your expected utility of wealth at a predetermined time T. Your utility function is h.

Answer the following:

- (a) What stochastic differential equation describes the evolution of your total wealth?
- (b) Define an appropriate value function u(x,t).
- (c) Specify the Hamilton-Jacobi-Bellman equation and final-time condition u should satisfy.
- (d) How does the value function determine the optimal asset allocations α_i ?

5) In pricing a perpetual American put, we considered an underlying satisfying $dy = \mu y ds + \sigma y dw$ and the goal was to evaluate $\max_{\tau} E_{y(0)=x} \left[e^{-r\tau} (K - y(\tau))_+ \right]$. Show that if v is a differentiable function with $v \ge (K - x)_+$ and $-rv + \mu x v_x + \frac{1}{2} \sigma^2 x^2 v_{xx} \le 0$ for all x then v gives an upper bound:

$$E_{y(0)=x}\left[e^{-r\tau}(K-y(\tau))_+\right] \le v(x)$$

for any bounded, nonanticipating stopping time τ .

6) This is a variant of the Bertsimas-Kogan-Lo least-squares-replication problem.considered in Section 7. It differs from the version in the notes in two ways: (i) the underlying has stochastic volatility; and (ii) the goal is not least-square replication but rather maximizing the utility of final-time wealth.

The underlying is a stock which can be traded at discrete times $i\Delta t$. Its price P_i and volatility σ_i at the *i*th time satisfy

$$\sigma_{i+1} = \sigma_i + f(\sigma_i)\Delta t + g(\sigma_i)\phi_i\sqrt{\Delta t}$$

$$P_{i+1} = P_i + \sigma_i P_i\psi_i\sqrt{\Delta t}$$

where f and g are specified functions and ψ_i , ϕ_i are independent standard Gaussians (with mean 0 and variance 1).

You have sold an option on this stock with payoff $F(P_N)$, receiving cash V_0 in payment. Your goal is to invest this cash wisely, trading in a self-financing way, to maximize the expected utility of your final-time wealth $E[h(V_N - F(P_N))]$. Here h is your utility.

- (a) Set this up as a discrete-time optimal control problem. What are the state variables? What is the control? Define an appropriate value function (call it J_i) at time $i\Delta t$. Be sure to specify the arguments of J_i , i.e. the variables it depends on.
- (b) What is the value of J_N ?
- (c) Give a recursion relation that specifies J_i in terms of J_{i+1} for i < N.

7) Consider scaled Brownian motion with jumps: $dy = \sigma dw + J dN$, starting at y(0) = x. Assume the jump occurences are Poisson with rate λ , and the jumps have mean 0 and variance δ^2 .

- (a) Find $E[y^2(T)]$. (Hint: for a Poisson process with rate λ , the expected number of arrivals by time T is λT .)
- (b) What backward Kolmogorov equation does part (a) solve?