PDE for Finance Final Exam Questions

Spring 2003 - Professor Kohn

1) Give a probabilistic interpretation for the solution of each PDE. (You must justify your answer to receive full credit.)
(a) $u_{t}+f(x) u_{x}+\frac{1}{2} g^{2}(x) u_{x x}=0$ for $t<T$ and $x \in R$, with final-time condition $u(x, T)=\phi(x)$.
(b) $f(x) u_{x}+\frac{1}{2} g^{2}(x) u_{x x}=-1$ on the interval $a<x<b$, with $u=0$ at the boundary points $x=a, b$.
2) This problem concerns the explicit solution formulas for the linear heat equation in a half-space and a bounded interval.
(a) The solution of

$$
u_{t}=u_{x x} \quad \text { for } t>0 \text { and } x>1, \text { with } u=(x-1)^{3} \text { at } t=0 \text { and } u=0 \text { at } x=1
$$ can be expressed as $u(x, t)=\frac{1}{\sqrt{4 \pi t}} \int e^{-|x-y|^{2} / 4 t} \phi(y) d y$. What is $\phi(y) ?$

(b) The solution of

$$
u_{t}=u_{x x} \quad \text { for } t>0 \text { and } 0<x<1, \text { with } u=g(x) \text { at } t=0 \text { and } u=0 \text { at } x=0,1
$$

can be expressed as $u(x, t)=\sum_{n=1}^{\infty} a_{n}(t) \sin (n \pi x)$. Find $a_{n}(t)$ in terms of g.
3) This problem concerns the arrival time at the boundary, for a random walker solving $d y=$ $f d t+g d w$ on the interval $[a, b]$.
(a) Let $G(x, y, t)$ be the probability, starting from x at time 0 , of being at y at time t without having yet hit the boundary. What version of the forward Kolmogorov equation does G solve?
(b) Express, as an integral involving G_{t}, the "first passage time density to the boundary," i.e. the probability that the process, starting from $a<x<b$, first hits the boundary at time t.
(c) Using your answers to (a) and (b) and some further manipulation, show that

$$
\text { first passage time density to the boundary }=-\left.\frac{1}{2} \frac{\partial}{\partial y}\left(g^{2} G(x, y, t)\right)\right|_{y=b}+\frac{1}{2} \frac{\partial}{\partial y}\left(\left.g^{2} G(x, y, t)\right|_{y=a}\right.
$$

4) Consider the following version of the Merton asset allocation problem:

- There is a risk-free asset, whose price satisfies $d p_{1}=r p_{1} d s$.
- There are two risky assets, whose prices p_{2} and p_{3} satisfy $d p_{i}=\mu_{i} p_{i} d s+\sigma_{i} p_{i} d w_{i}$ for $i=2,3$. We assume for simplicity that w_{2} and w_{3} are independent Brownian motions.
- Your controls are $\alpha_{i}(s)=$ the fraction of your wealth invested in asset i at time $\mathrm{s}, i=1,2,3$; note that $\alpha_{1}+\alpha_{2}+\alpha_{3}=1$.
- There is no consumption, and your goal is to optimize your expected utility of wealth at a predetermined time T. Your utility function is h.

Answer the following:
(a) What stochastic differential equation describes the evolution of your total wealth?
(b) Define an appropriate value function $u(x, t)$.
(c) Specify the Hamilton-Jacobi-Bellman equation and final-time condition u should satisfy.
(d) How does the value function determine the optimal asset allocations α_{i} ?
5) In pricing a perpetual American put, we considered an underlying satisfying $d y=\mu y d s+\sigma y d w$ and the goal was to evaluate $\max _{\tau} E_{y(0)=x}\left[e^{-r \tau}(K-y(\tau))_{+}\right]$. Show that if v is a differentiable function with $v \geq(K-x)_{+}$and $-r v+\mu x v_{x}+\frac{1}{2} \sigma^{2} x^{2} v_{x x} \leq 0$ for all x then v gives an upper bound:

$$
E_{y(0)=x}\left[e^{-r \tau}(K-y(\tau))_{+}\right] \leq v(x)
$$

for any bounded, nonanticipating stopping time τ.
6) This is a variant of the Bertsimas-Kogan-Lo least-squares-replication problem.considered in Section 7. It differs from the version in the notes in two ways: (i) the underlying has stochastic volatility; and (ii) the goal is not least-square replication but rather maximizing the utility of final-time wealth.

The underlying is a stock which can be traded at discrete times $i \Delta t$. Its price P_{i} and volatility σ_{i} at the i th time satisfy

$$
\begin{aligned}
\sigma_{i+1} & =\sigma_{i}+f\left(\sigma_{i}\right) \Delta t+g\left(\sigma_{i}\right) \phi_{i} \sqrt{\Delta t} \\
P_{i+1} & =P_{i}+\sigma_{i} P_{i} \psi_{i} \sqrt{\Delta t}
\end{aligned}
$$

where f and g are specified functions and ψ_{i}, ϕ_{i} are independent standard Gaussians (with mean 0 and variance 1).
You have sold an option on this stock with payoff $F\left(P_{N}\right)$, receiving cash V_{0} in payment. Your goal is to invest this cash wisely, trading in a self-financing way, to maximize the expected utility of your final-time wealth $E\left[h\left(V_{N}-F\left(P_{N}\right)\right)\right]$. Here h is your utility.
(a) Set this up as a discrete-time optimal control problem. What are the state variables? What is the control? Define an appropriate value function (call it J_{i}) at time $i \Delta t$. Be sure to specify the arguments of J_{i}, i.e. the variables it depends on.
(b) What is the value of J_{N} ?
(c) Give a recursion relation that specifies J_{i} in terms of J_{i+1} for $i<N$.
7) Consider scaled Brownian motion with jumps: $d y=\sigma d w+J d N$, starting at $y(0)=x$. Assume the jump occurences are Poisson with rate λ, and the jumps have mean 0 and variance δ^{2}.
(a) Find $E\left[y^{2}(T)\right]$. (Hint: for a Poisson process with rate λ, the expected number of arrivals by time T is λT.)
(b) What backward Kolmogorov equation does part (a) solve?

