
PDE for Finance Notes – Section 8
Notes by Robert V. Kohn, Courant Institute of Mathematical Sciences. For use only in
connection with the NYU course PDE for Finance, G63.2706, Spring 2000.

Reminder concerning the final: The exam will be Tuesday May 9, at the usual class
time. It will be “closed-book” (no books, no lecture notes), however you may bring two
sheets of notes (8.5 × 11, both sides, write as small as you like). You are responsible for
the material in Sections 1-6 of the lecture notes, and in Homeworks 1-6. See the separate
handout for further discussion of what to expect. (The material in these Section 8 notes
will not be on the exam.)

****************

Some explicit solution formulas for the constant-coefficient heat equation in one
space dimension. The Black-Scholes PDE can be reduced by change of variables to the
constant-coefficient linear heat equation. (This was essentially a homework problem, for the
simplest case – when the underlying asset has constant volatility and the risk-free rate is
constant. There is a similar reduction when the volatility and risk-free rate are deterministic
functions of time. The crucial hypotheses are that these functions are known in advance,
and that the volatility is not a function of stock price.) Therefore explicit solution formulas
for the 1D linear heat equation are useful for pricing options.

We discussed in Section 6 the case when x ranges over the entire real line:

(a) The whole-space problem

ut = uxx for t > 0, with u = g at t = 0.

The solution to (a) is

u(x, t) =
∫ ∞

−∞
k(x− y, t)g(y) dy (1)

where
k(z, t) =

1√
4πt

e−z2/4t (2)

This leads (using the change of variables) to an explicit formula for value of a (vanilla)
European option with any payoff. Notice that k(z, t) gives the probability of a Brownian
walker being at z at time t, if it started at the origin at time 0. This k is called the
fundamental solution of the heat equation. (The statement I just made about the “Brownian
walker” was sloppy: it would have been true if we had solved ut = 1

2uxx. In the present
context the relevant random walk is

√
2 times Brownian motion.)

There are similarly explicit solution formulas in several other cases:

(b) The whole-space problem with a source

ut = uxx + f(x, t) for t > 0, with u = g at t = 0. (3)
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Recall from our discussion of the backward Kolmogorov equation that a running term in
the payoff shows up as a source term in the equation. In pricing options, a source term can
arise from dividends.

(c) The initial-value problem for a half-space

ut = uxx for t > 0 and x > x0, with u = g at t = 0 and u = φ at x = x0. (4)

Since this is a boundary-value problem, we must specify data both at the initial time t = 0
and at the spatial boundary x = 0. We arrived at this type of problem in our discussion of
the backward Kolmogorov equation when we considered a payoff defined at an exit time.
The relevant option-pricing problems involve barriers. If the option becomes worthless at
when the stock price crosses the barrier then φ = 0 (this is a knock-out option). If the
option turns into a different instrument when the stock price crosses the barrier then φ is
the value of that instrument.

These notes explain the solution formulas for problems (b) and (c).

The whole-space problem with a source. The heat equation is a PDE, but it’s some-
times convenient to think of it as an “infinite-dimensional ODE.” To explain this viewpoint,
consider first the simple ODE

dz

dt
= Az + f. (5)

when A is a constant n × n matrix and f = (f1, . . . , fn) is a known function of time. We
must also specify the initial condition z(0); then the equation determines the future values
z = (z1, . . . , zn) as a function of time. Because A is constant the equation is easy to solve:
multiplying both sides by e−At and doing a bit of calculation we see that

d

dt

[
e−Atz

]
= e−Atf

whence
e−Atz(t) − z(0) =

∫ t

0
e−Asf(s) ds

and it follows that
z(t) = eAtz(0) +

∫ t

0
eA(t−s)f(s) ds.

Notice that the first term gives the solution when f = 0 (in other words z(t) = eAtz(0)
solves dz/dt = Az with initial condition z(0)). The second term gives the solution when
z(0) = 0 (in other words z(t) =

∫ t
0 e

A(t−s)f(s) ds solves dz/dt = Az+f with initial condition
0). It is natural for the solution to come in this two-part form, since the problem is linear.

What does this have to do with the PDE ut = ∆u + f? One way to see that the PDE
resembles an ODE is to consider our explicit finite difference scheme with ∆t = 0. It gives
an ODE for the values of u at grid points, u(t, j∆x). If space is bounded then this is quite
literally an ODE of the type considered above. This example suggests the correct viewpoint:
we should view t → u(t, ·) as a function of time taking values in the infinite-dimensional
vector space of functions of x, and we should view the Laplacian ∆ as a linear operator
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on functions of x. In summary: the heat equation is like the ODE (5), with u(t, ·) playing
the role of z(t) and ∆u = uxx playing the role of Az. The source term is f in both cases,
but for the PDE we view it as t → f(t, ·), a function of time whose values are functions of
space.

This (formal, but justifiable) analogy suggests the following solution formula for (3):

u(t) = et∆g +
∫ t

0
e(t−s)∆f(s) ds. (6)

This is correct, provided we interpret it properly. Both sides are functions of space at time
t. The value of the left hand side at x is u(x, t). The function et∆g is the solution of the
heat equation ut = uxx with initial data g at time 0, so

et∆g =
∫ ∞

−∞
k(x− y, t)g(y) dy

where k is the fundamental solution. The function e(t−s)∆f(s) is similarly the solution of
the heat equation with initial data f(s) at time s, evaluated at the later time t = s+(t−s);
we know this is

e(t−s)∆f(s) =
∫ ∞

−∞
k(x− y, t− s)f(y, s) dy.

Thus interpreted, right hand side of (6) is indeed the solution of (3).

The half-space problem with boundary condition 0. It’s clear, by linearity, that the
solution of (4) can be written as u = v + w, where v solves

vt = vxx for t > 0 and x > x0, with v = g at t = 0 and v = 0 at x = x0 (7)

(in other words: v solves the same PDE with the same initial data but boundary data 0)
and w solves

wt = wxx for t > 0 and x > x0, with w = 0 at t = 0 and w = φ at x = x0 (8)

(in other words: w solves the same PDE with the same boundary data but initial data 0).
There is no loss of generality in taking x0 = 0, and we make this choice henceforth.

We concentrate for the moment on v. To obtain its solution formula, we consider the whole-
space problem with the odd reflection of g as initial data. Remembering that x0 = 0, this
odd reflection is defined by

g̃(x) =

{
g(x) if x > 0

−g(−x) if x < 0

(see Figure 1). Notice that the odd reflection is continuous at 0 if g(0) = 0; otherwise it is
discontinuous, taking values ±g(0) just to the right and left of 0.

Let ṽ(x, t) solve the whole-space initial-value problem with initial condition g̃. We claim

• ṽ is a smooth function of x and t for t > 0 (even if g(0) 6= 0);
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Figure 1: Odd reflection. Note that the odd reflection is discontinuous at 0 if the original
function doesn’t vanish there.

• ṽ(x, t) is an odd function of x for all t, i.e. ṽ(x, t) = −ṽ(−x, t).
The first bullet follows from the smoothing property of the heat equation. The second bullet
follows from the uniqueness of solutions to the heat equation, since ṽ(x, t) and −ṽ(−x, t)
both solve the heat equation with the same initial data g̃.

We’re essentially done. The oddness of ṽ gives ṽ(0, t) = −ṽ(0, t), so ṽ(0, t) = 0 for all t > 0.
Thus

v(x, t) = ṽ(x, t), restricted to x > 0

is the desired solution to (7). Of course it can be expressed using (1): a formula encapsu-
lating our solution procedure is

v(x, t) =
∫ ∞

0
k(x− y, t)g(y) dy +

∫ 0

−∞
k(x− y, t)(−g(−y)) dy

=
∫ ∞

0
[k(x− y, t) − k(x+ y, t)]g(y) dy

where k(x, t) is the fundamental solution of the heat equation, given by (2). Notice that

v(x, t) =
∫ ∞

0
G(x, y, t)g(y) dy

with
G(x, y, s) = k(x− y, t) − k(x+ y, t). (9)

Notice that G(x, y, s) = G(y, x, s) so we don’t have to try to remember which variable (x or
y) we put first. The function G is called the “Green’s function” of the half-space problem.
Based on our discussion of the forward Kolmogorov equation, we recognize G(x, y, t) as
giving the probability that a Brownian particle starting from y at time 0 reaches position
x at time t without first reaching the origin. (Here again I’m being sloppy: the relevant
random walk is not Brownian motion but

√
2 times Brownian motion.)
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Remark: notice that it makes a great deal of difference whether g(0) vanishes or not. If
g(0) 6= 0 then the solution v has strange behavior at x = t = 0, since it vanishes when we
approach this point along the spatial boundary (x = 0, t > 0) but not when we approach it
along the initial boundary (t = 0, x > 0). Such behavior occurs, for example, when pricing
a knock-out barrier option, if the barrier is to the wrong side of the strike price.

The half-space problem with initial condition 0. It remains to consider w, defined by
(8). It solves the heat equation on the half-space, with initial value 0 and boundary value
φ(t). We focus on the case when the φ is compatible with the initial data in the sense that

φ(0) = 0 (10)

so that w is continuous at x = 0, t = 0. The solution w is given by

w(x, t) =
∫ t

0

∂G

∂y
(x, 0, t− s)φ(s) ds (11)

where G(x, y, t) is the Green’s function of the half-space problem given by (9). Using the
formula derived earlier for G, this amounts to

w(x, t) =
∫ t

0

x

(t− s)
√

4π(t− s)
e−x2/4(t−s)φ(s) ds

The justification of (11) is not difficult, but it’s rather different from what we’ve done before.
Consider the function ψ which solves the heat equation backward in time from time t, with
final-time data concentrated at x0 at time t (use Figure 2 to visualize the geometry). We
mean ψ to be defined only for x > 0, with ψ = 0 at the spatial boundary x = 0. In formulas,
our definition is

ψτ + ψyy = 0 for τ < t and y > 0, with ψ = δx0 at τ = t and ψ = 0 at y = 0.

A formula for ψ is readily available, since the change of variable s = t − τ transforms the
problem solved by ψ one considered earlier for v:

ψ(y, τ) = G(x0, y, t− τ). (12)

What’s behind our strange-looking choice or ψ? Two things. First, the choice of final-time
data gives

w(x0, t) =
∫
ψ(y, t)w(y, t) dy.

(The meaning of the statement “ψ = δx0 at time t” is precisely that this holds for every
continuous w). Second, if w solves the heat equation forward in time and ψ solves it
backward in time then

d

ds

∫ ∞

0
ψ(y, s)w(y, s) dy =

∫ ∞

0
ψsw + ψws dy

=
∫ ∞

0
−ψyyw + ψwyy dy

=
∫ ∞

0
−(ψyw)y + (ψwy)y dy

= (−ψyw + ψwy)|∞0 . (13)
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time t

time 0

(x0, t)

ψ = 0

ψ = δx0

Figure 2: The boundary and final-time conditions for ψ.

(I’ve used here that the heat equation backward-in-time is the formal adjoint of the heat
equation forward-in-time; you saw this before in the discussion of the forward Kolmogorov
equation, which is always the formal adjoint of the backward Kolmogorov equation.) Be-
cause of our special choice of ψ the last formula simplifies: ψ and ψy decay rapidly enough
at ∞ to kill the “boundary term at infinity,” and the fact that ψ = 0 at y = 0 kills one of
the two boundary terms at 0. Since w(0, s) = φ(s) what remains is

d

ds

∫ ∞

0
ψ(y, s)w(y, s) dy = ψy(0, s)φ(s).

We’re essentially done. Substitution of (12) in the above gives, after integration in s,
∫ ∞

0
ψ(y, t)w(y, t) dy −

∫ ∞

0
ψ(y, 0)w(y, 0) =

∫ t

0
Gy(x0, 0, t− s)φ(s) ds.

The first term on the left is just w(x0, t), by our choice of ψ, and the second term on the
left vanishes since w = 0 at time 0, yielding precisely the desired solution formula (11).

Final remark: the compatibility condition (10) represents no real loss of generality. If, in
the original problem for u, the boundary data have φ(0) 6= 0 then we may simply consider
u − c where c is constant. It still solves the heat equation, with boundary data φ − c and
initial data g − c. When c = φ(0) we see that the boundary data vanish at 0. Thus the
argument given above applies without difficulty to u− φ(0).

**************

Answering a question left over from Section 2. Remember Pontryagin’s maximum
principle: it says that for the deterministic control problem with equation of state dy/ds =
f(y, α) and value function

u(x, t) = max
α

{∫ T

t
h(y(s), α(s)) ds + g(y(T ))

}
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the optimal path solves the Hamiltonian system

dy

ds
= ∇πH(π, y)

dπ

ds
= −∇yH(π, y)

where H(π, y) = maxα{π · f(y, α) + h(y, α)} is the Hamiltonian.

I made the further assertion that

π(s) = ∇u(y(s), s), (14)

evaluated of course along the optimal path y(s). Let us check that ∇u(y(s), s) does indeed
solve the second equation in the Hamiltonian system. (The fact that y(s) solves the first
equation was verified in Section 2; this was easy, since ∇πH = f .) The argument works in
any dimension, however it is most transparent in 1D so let’s work there. Obviously

d

ds
ux(y(s), s) = uxx

dy

ds
+ uxs = uxxf + uxs,

evaluated as usual at x = y(s). Now consider the Hamilton-Jacobi-Bellman equation

ut(x, t) + max
α

{ux(x, t)f(x, α) + h(x, α)} = 0.

Let α∗ be the optimal α, and ignore (this is admittedly a formal calculation) the possibility
that α∗ might not depend smoothly on x and t at some points. Writing the HJB equation
as

ut(x, t) + ux(x, t)f(x, α∗) + h(x, α∗) = 0

we differentiate it in x using chain rule. The terms involving derivatives with respect to α∗
drop out (because α∗ is optimal), so

uxt(x, t) + uxx(x, t)f(x, α∗(x, t)) + ux(x, t)fx(x, α∗) + hx(x, α∗) = 0.

Making the substitution x = y(t), and remembering that

∇xH(π, x) = πfx + hx

(evaluated of course at the optimal α∗), we deduce that

d

dt
ux(y(t), t) = −(∇xH)(ux(y(t)), t), y(t))

as asserted.

Now consider the mistake in Section 2 which I corrected at the beginning of Section 3. The
mistaken assertion was that we always have π(T ) = ∇g(y(T )) at the final time T . It is
tempting to say this, by passing to the limit t→ T in (14). The argument is correct – and
the assertion is valid – if ∇u(x, t) is a continuous function of x and t near x = y(T ) and
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t = T . However this isn’t always the case. In fact it fails in Example 1. There we had that
u(x, t) = φ(t)xγ with γ < 1. Our formula for φ has the property that

φ ≈ e−ρt(T − t)(1 − γ) near t = T .

Setting ρ = 0 for simplicity, we see that

ux(x, t) ≈ γxγ−1(T − t)1−γ =
(
T − t

x

)1−γ

near x = 0, t = T . Therefore the limiting value of ux(y(t), t) as t → T need not be zero,
even though g = 0 in this example. Rather, the limit is determined by the slope of y(t) as
it approaches 0 at t = T .
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