PDE for Finance Notes — Section 8
Notes by Robert V. Kohn, Courant Institute of Mathematical Sciences. For use only in
connection with the NYU course PDE for Finance, G63.2706, Spring 2000.

Reminder concerning the final: The exam will be Tuesday May 9, at the usual class
time. It will be “closed-book” (no books, no lecture notes), however you may bring two
sheets of notes (8.5 x 11, both sides, write as small as you like). You are responsible for
the material in Sections 1-6 of the lecture notes, and in Homeworks 1-6. See the separate
handout for further discussion of what to expect. (The material in these Section 8 notes
will not be on the exam.)
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Some explicit solution formulas for the constant-coefficient heat equation in one
space dimension. The Black-Scholes PDE can be reduced by change of variables to the
constant-coefficient linear heat equation. (This was essentially a homework problem, for the
simplest case — when the underlying asset has constant volatility and the risk-free rate is
constant. There is a similar reduction when the volatility and risk-free rate are deterministic
functions of time. The crucial hypotheses are that these functions are known in advance,
and that the volatility is not a function of stock price.) Therefore explicit solution formulas
for the 1D linear heat equation are useful for pricing options.

We discussed in Section 6 the case when x ranges over the entire real line:

(a) The WHOLE-SPACE PROBLEM
Ut = Uge fort >0, withu=gatt=0.

The solution to (a) is
u(z,t) = /_Oo k(x =y, t)g(y) dy (1)

where

1 .
k(zat):me /4t (2)

This leads (using the change of variables) to an explicit formula for value of a (vanilla)
European option with any payoff. Notice that k(z,t) gives the probability of a Brownian
walker being at z at time ¢, if it started at the origin at time 0. This k is called the
fundamental solution of the heat equation. (The statement I just made about the “Brownian
walker” was sloppy: it would have been true if we had solved u; = %um In the present
context the relevant random walk is v/2 times Brownian motion.)

There are similarly explicit solution formulas in several other cases:

(b) The WHOLE-SPACE PROBLEM WITH A SOURCE

U = Uy + f(x,t) fort >0, withu =g att=0. (3)



Recall from our discussion of the backward Kolmogorov equation that a running term in
the payoff shows up as a source term in the equation. In pricing options, a source term can
arise from dividends.

(c) The INITIAL-VALUE PROBLEM FOR A HALF-SPACE
Up = Uy fort>0and x> xg, withu=gatt=0and u=¢ at x = xg. (4)

Since this is a boundary-value problem, we must specify data both at the initial time ¢t =0
and at the spatial boundary x = 0. We arrived at this type of problem in our discussion of
the backward Kolmogorov equation when we considered a payoff defined at an exit time.
The relevant option-pricing problems involve barriers. If the option becomes worthless at
when the stock price crosses the barrier then ¢ = 0 (this is a knock-out option). If the
option turns into a different instrument when the stock price crosses the barrier then ¢ is
the value of that instrument.

These notes explain the solution formulas for problems (b) and (c).

The whole-space problem with a source. The heat equation is a PDE, but it’s some-
times convenient to think of it as an “infinite-dimensional ODE.” To explain this viewpoint,

consider first the simple ODE

dz

when A is a constant n x n matrix and f = (f1,..., fn) is a known function of time. We
must also specify the initial condition z(0); then the equation determines the future values
z = (z1,...,2n) as a function of time. Because A is constant the equation is easy to solve:
multiplying both sides by e~4* and doing a bit of calculation we see that

d — At . —At
7 [e z} =e f
whence .
e A(t) — 2(0) = / e A f(s)ds
0
and it follows that .
A1) = eM2(0) + / A=) £(5) ds.
0

Notice that the first term gives the solution when f = 0 (in other words z(t) = e4*z(0)
solves dz/dt = Az with initial condition z(0)). The second term gives the solution when
2(0) = 0 (in other words z(¢) = [3 eAt=*) f(s) ds solves dz/dt = Az+ f with initial condition
0). It is natural for the solution to come in this two-part form, since the problem is linear.

What does this have to do with the PDE u; = Au + f7 One way to see that the PDE
resembles an ODE is to consider our explicit finite difference scheme with At = 0. It gives
an ODE for the values of u at grid points, u(t, jAz). If space is bounded then this is quite
literally an ODE of the type considered above. This example suggests the correct viewpoint:
we should view ¢ — u(t,-) as a function of time taking values in the infinite-dimensional
vector space of functions of xz, and we should view the Laplacian A as a linear operator



on functions of x. In summary: the heat equation is like the ODE (5), with u(t,-) playing
the role of z(t) and Au = u,, playing the role of Az. The source term is f in both cases,
but for the PDE we view it as t — f(¢,-), a function of time whose values are functions of
space.

This (formal, but justifiable) analogy suggests the following solution formula for (3):

u(t) = g + /0 DI f(s)ds. (6)

This is correct, provided we interpret it properly. Both sides are functions of space at time
t. The value of the left hand side at z is u(z,t). The function e*®g is the solution of the
heat equation u; = u,, with initial data g at time 0, so

9= [ ko=, 09(y) dy

where k is the fundamental solution. The function e*=*)2 f(s) is similarly the solution of
the heat equation with initial data f(s) at time s, evaluated at the later time t = s+ (t — s);
we know this is

9N (s) = [ e~ gt = ) () dy.
Thus interpreted, right hand side of (6) is indeed the solution of (3).

The half-space problem with boundary condition 0. It’s clear, by linearity, that the
solution of (4) can be written as u = v + w, where v solves

Vg = Ve fort>0and x> xg, withv=gatt=0andv=0atz=uxg (7)

(in other words: v solves the same PDE with the same initial data but boundary data 0)
and w solves

Wy = Wy fort>0and x> xp, withw=0att=0and w=¢ at x = zg (8)
(in other words: w solves the same PDE with the same boundary data but initial data 0).

There is no loss of generality in taking zg = 0, and we make this choice henceforth.

We concentrate for the moment on v. To obtain its solution formula, we consider the whole-
space problem with the odd reflection of g as initial data. Remembering that x¢ = 0, this
odd reflection is defined by

. () ifx>0
g(z) = { —Z(—x) ifx <0

(see Figure 1). Notice that the odd reflection is continuous at 0 if g(0) = 0; otherwise it is
discontinuous, taking values +¢(0) just to the right and left of 0.

Let v(x,t) solve the whole-space initial-value problem with initial condition §. We claim

e ¥ is a smooth function of x and ¢ for ¢t > 0 (even if g(0) # 0);



Figure 1: Odd reflection. Note that the odd reflection is discontinuous at 0 if the original
function doesn’t vanish there.

e 0(x,t) is an odd function of x for all ¢, i.e. 0(z,t) = —0(—=z,1).

The first bullet follows from the smoothing property of the heat equation. The second bullet
follows from the uniqueness of solutions to the heat equation, since 0(x,t) and —o(—=x,t)
both solve the heat equation with the same initial data g.

We're essentially done. The oddness of ¢ gives 9(0,t) = —(0,t), so 9(0,¢) = 0 for all ¢ > 0.
Thus
v(x,t) = v(z,t), restricted to x>0

is the desired solution to (7). Of course it can be expressed using (1): a formula encapsu-
lating our solution procedure is

oiet) = [k g@dy+ [ ke -y 00-a(-p)d

— /0 [k(x —y,t) — k(z +y,t)]g(y) dy

where k(z,t) is the fundamental solution of the heat equation, given by (2). Notice that

wat) = [ Gy 9t dy

with
G(z,y,s) = k(x —y,t) — k(z + y,1t). 9)

Notice that G(z,y,s) = G(y, z, s) so we don’t have to try to remember which variable (z or
y) we put first. The function G is called the “Green’s function” of the half-space problem.
Based on our discussion of the forward Kolmogorov equation, we recognize G(z,y,t) as
giving the probability that a Brownian particle starting from y at time 0 reaches position
x at time t without first reaching the origin. (Here again I'm being sloppy: the relevant
random walk is not Brownian motion but /2 times Brownian motion.)



Remark: notice that it makes a great deal of difference whether g(0) vanishes or not. If
g(0) # 0 then the solution v has strange behavior at = ¢t = 0, since it vanishes when we
approach this point along the spatial boundary (z = 0, ¢ > 0) but not when we approach it
along the initial boundary (¢ = 0, z > 0). Such behavior occurs, for example, when pricing
a knock-out barrier option, if the barrier is to the wrong side of the strike price.

The half-space problem with initial condition 0. It remains to consider w, defined by
(8). It solves the heat equation on the half-space, with initial value 0 and boundary value
¢(t). We focus on the case when the ¢ is compatible with the initial data in the sense that

$(0) =0 (10)
so that w is continuous at x = 0, ¢ = 0. The solution w is given by
t oG
w(z,t) = | —(x,0,t —s)p(s)ds (11)
0o Jy

where G(z,y,t) is the Green’s function of the half-space problem given by (9). Using the
formula derived earlier for G, this amounts to

X

w(x,t) = t e~ /A=) (5) ds
(%) /0 (t — s)\/Am(t —s) ' 9(s)d

The justification of (11) is not difficult, but it’s rather different from what we’ve done before.
Consider the function v which solves the heat equation backward in time from time ¢, with
final-time data concentrated at zy at time t (use Figure 2 to visualize the geometry). We
mean Y to be defined only for x > 0, with ©» = 0 at the spatial boundary = 0. In formulas,
our definition is

Yy +1yy =0 for 7 <tandy >0, with ¢ =0,y at T=tand ¢ =0at y =0.

A formula for ¢ is readily available, since the change of variable s = ¢ — 7 transforms the
problem solved by 1 one considered earlier for v:

lb(il/a T) = G(Qﬁ‘o, Yt — T)‘ (12)

What’s behind our strange-looking choice or 1?7 Two things. First, the choice of final-time
data gives

wiao.t) = [ vly. Ou(y.t)dy.

(The meaning of the statement “i) = d,, at time ¢” is precisely that this holds for every
continuous w). Second, if w solves the heat equation forward in time and v solves it
backward in time then

d o0 oo
= v sdy = [T v vy
= /o —Yyyw + YPwy, dy

= /OOO —(Yyw)y + (Pwy)y dy
= (=yw +Ywy)|° (13)
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Figure 2: The boundary and final-time conditions for .

(I've used here that the heat equation backward-in-time is the formal adjoint of the heat
equation forward-in-time; you saw this before in the discussion of the forward Kolmogorov
equation, which is always the formal adjoint of the backward Kolmogorov equation.) Be-
cause of our special choice of 1) the last formula simplifies: ¢ and 1, decay rapidly enough
at oo to kill the “boundary term at infinity,” and the fact that ¥» = 0 at y = 0 kills one of
the two boundary terms at 0. Since w(0,s) = ¢(s) what remains is

d

= | vt s ) dy = v, 0.5)0(5)

We're essentially done. Substitution of (12) in the above gives, after integration in s,

/0 = y w(y, £) dy — /0 by, 0)w(y, 0) = /O Gy (20,0, — 5)6(s) ds.

The first term on the left is just w(xg,t), by our choice of ¢, and the second term on the
left vanishes since w = 0 at time 0, yielding precisely the desired solution formula (11).

Final remark: the compatibility condition (10) represents no real loss of generality. If, in
the original problem for u, the boundary data have ¢(0) # 0 then we may simply consider
u — ¢ where ¢ is constant. It still solves the heat equation, with boundary data ¢ — ¢ and
initial data g — c. When ¢ = ¢(0) we see that the boundary data vanish at 0. Thus the
argument given above applies without difficulty to u — ¢(0).
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Answering a question left over from Section 2. Remember Pontryagin’s maximum
principle: it says that for the deterministic control problem with equation of state dy/ds =
f(y, ) and value function

T
u(z, 1) = max { | hu(s).a(s) ds +g<y<T>>}

6



the optimal path solves the Hamiltonian system

dy

-5 = 7TH 5

e V.H(m,y)
dm

5 ~VyH(m,y)

where H(m,y) = maxo{m - f(y,a) + h(y,a)} is the Hamiltonian.

I made the further assertion that

W(S) = vu(y(8)78)7 (14)

evaluated of course along the optimal path y(s). Let us check that Vu(y(s),s) does indeed
solve the second equation in the Hamiltonian system. (The fact that y(s) solves the first
equation was verified in Section 2; this was easy, since V.H = f.) The argument works in
any dimension, however it is most transparent in 1D so let’s work there. Obviously

4
ds

ux(y(5)7 5) = umc_y + uzps = U:mcf + Ugs,

ds

evaluated as usual at © = y(s). Now consider the Hamilton-Jacobi-Bellman equation
ur(, 1) + max{us (e, )£ (2,0) + h(z,a)} = 0.

Let a be the optimal «, and ignore (this is admittedly a formal calculation) the possibility
that o, might not depend smoothly on = and ¢ at some points. Writing the HJB equation
as

up(x,t) + ug(z,t) f(z, n) + h(z,00) =0

we differentiate it in x using chain rule. The terms involving derivatives with respect to a
drop out (because «, is optimal), so

Upt (T, 1) + U (2, 8) f (2, i (2, 1)) + ug(x, t) fo (2, ) + hy (2, ) = 0.
Making the substitution x = y(t), and remembering that
V. H(m,x) =7mf, + hy
(evaluated of course at the optimal « ), we deduce that

%ux(y(t),t) — (V. H)(ua(y(t)), 1), y(1))

as asserted.

Now consider the mistake in Section 2 which I corrected at the beginning of Section 3. The
mistaken assertion was that we always have 7(T) = Vg(y(T)) at the final time 7. It is
tempting to say this, by passing to the limit ¢ — 7" in (14). The argument is correct — and
the assertion is valid — if Vu(z,t) is a continuous function of z and ¢ near x = y(T') and



t = T. However this isn’t always the case. In fact it fails in Example 1. There we had that
u(z,t) = ¢(t)zY with v < 1. Our formula for ¢ has the property that

pre P (T —1)1 —7) neart=T.

Setting p = 0 for simplicity, we see that

T—t)l—W

g (z,t) ~ 4z’ N (T — )7 = <
x

near x = 0, t = T. Therefore the limiting value of wu,(y(t),t) as t — T need not be zero,
even though g = 0 in this example. Rather, the limit is determined by the slope of y(t) as
it approaches 0 at t =T



