
PDE for Finance Notes – Section 7
Notes by Robert V. Kohn, Courant Institute of Mathematical Sciences. For use only in
connection with the NYU course PDE for Finance, G63.2706, Spring 2000.

Reminder concerning the final: The exam will be Tuesday May 9, at the usual class
time. It will be “closed-book” (no books, no lecture notes), however you may bring two
sheets of your own notes (8.5×11, both sides, write as small as you like). You are responsible
for material in Sections 1-6 of the lecture notes, and in Homeworks 1-6. See a separate
handout for further discussion of what to expect. (The material in these Section 7 notes
will not be on the exam. But it is important.)

Correction to the HW5 solution sheet: The solution given for 4(d) (“what happens
when µ = 1

2σ2?”) was incorrect. Here’s a sketch of the right answer. Observe first that
xux + x2uxx = uzz with z = log x. So the general solution of µ(xux + x2uxx) = −1 is

−1
2µ

z2 + c1z + c2 =
−1
2µ

(log x)2 + c1 log x + c2.

The proof that the expected exit time is finite proceeds by the usual argument, using
Ito’s lemma applied to φ(x) = (log x)2. To get the exit probabilities, use Ito applied to
φ(x) = log x. This gives log x = Ey(0)=x[log(y(τ))] = pa log a + pb log b. Using the fact that
pb = 1 − pa it follows easily that

pa =
log b − log x

log b − log a
, pb =

log x − log a

log b − log a
.

*************************

Optimal stopping. Optimal stopping refers to a special class of stochastic control prob-
lems where the only decision to be made is “when to stop.” The decision when to sell an
asset is one such problem. The decision when to exercise an American option is another.
Mathematically, such a problem involves optimizing the expected payoff over a suitable class
of stopping times. The value function satisfies a “free boundary problem” for the backward
Kolmogorov equation.

As usual, we shall focus on a simple yet representative example which displays the main
ideas, namely: when to sell a stock which undergoes log-normal price dynamics. Our
treatment follows Oksendal, Examples 10.2.2 and 10.4.2. After completing this example,
we shall discuss how similar ideas apply to the pricing of American options.

Note that we discussed some discrete-time optimal stopping problems earlier in the semester
(when to sell an asset; when to park your car). Our goal here is to understand some
analogous continuous-time problems.
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When to sell an asset. This problem is familiar to any investor: when to sell a stock you
presently own? Keeping things simple (to permit a closed-form solution), we suppose the
stock price executes geometric brownian motion

dy = µyds + σydw

with constant µ and σ. Assume a fixed commission a is payable at the time of sale, and
suppose the present value of future income is calculated using a constant discount rate r.
Then the time-0 value realized by sale at time s is

e−rs[y(s) − a].

Our task is to choose the time of sale optimally. The decision to sell may depend on the
stock price, and in principle on all information about the stock price history – but not on
knowledge of the future. Thus the sales time τ is random but non-anticipating, i.e. it is
a stopping time. We plan to use the method of dynamic programming, so it is natural to
formulate the problem with an arbitrary initial time and initial state (but with the objective
always discounted to time 0). Our goal is thus to find

u(x, t) = max
τ

Ey(t)=x

[
e−rτ (y(τ) − a)

]
(1)

where the maximization is over all stopping times.

It is natural to assume that µ < r, and we shall do so. If µ > r then the maximum value
of (1) is easily seen to be ∞; if µ = r then the maximum value (1) turns out to be xe−rt.
When µ ≥ r there is no optimal stopping time – a sequence of better and better stopping
times tends to ∞ instead of converging. (Exercise: prove the assertions in this paragraph.)

Our plan is a lot like the one we used for other optimal control problems: we shall guess,
using a combination of rigorous and heuristic arguments, the optimal stopping rule. Then
we’ll prove our guess is right by a suitable verification argument.

We naturally expect that
u(x, t) ≥ e−rt(x − a)

since one possible strategy is to sell immediately. Moreover it is optimal to sell immediately
(at time t) exactly if u = e−rt(x−a). By the principle of dynamic programming, we should
consider, at each moment s > t, whether to sell immediately or hold longer. Thus the
optimal stopping rule should have the form

sell when (y(s), s) leaves the set H

where H is the “hold” region

H = {(x, t) : u(x, t) > e−rt(x − a)}.

We claim that H is independent of t, and it really has the form

H = {(x, t) : (0 < x < h)} (2)
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for some “selling threshold” h. To see why H is independent of t, observe that

u(x, t) = e−rt max
τ

Ey(t)=x

[
e−r(τ−t)(y(τ) − a)

]
= e−rtũ(x)

where ũ is the optimal payoff discounted to the starting time (which is therefore independent
of the starting time). Thus u > e−rt(x−a) exactly if ũ > x−a. So the decision whether to
“sell immediately” or “hold longer” depends only on the initial stock price x. It’s natural to
expect that this dependence is through a sales threshold h, i.e. that the set where ũ > x−a
is an interval. Rather than prove this now, consider it a guess to be verified later.

If h were known then u(x, t) would be fully determined as the solution to an exit-time
problem similar to those discussed in Section 5. There we considered

v(x, t) = Ey(t)=x

[∫ τ

t
Ψ(y(s), s) ds + Φ(y(τ), τ)

]

where τ was the exit time from a domain D. We saw that v solves

vt + Lv + Ψ = 0 for x ∈ D, v = Φ for x ∈ ∂D

where L is the infinitesimal generator of the SDE. (The discussion in Section 5 had a fixed
maturity time T , and set τ = T if the exit time was greater than T . However if the expected
exit time is finite then we can pass to the limit T → ∞. This is equivalent to solving an
elliptic boundary value problem for ũ, as will be clear presently.)

The special case of interest here is D = (0, h), Φ(y, s) = e−rs(y−a), Ψ = 0. Writing uh(x, t)
for the expected final cost, we deduce that

uh
t + µxuh

x + 1
2σ2x2uh

xx = 0 for 0 < x < h

and
uh(x, t) = e−rt(x − a) at x = h.

(We do not impose a boundary condition at x = 0 because geometric Brownian motion
never reaches 0.)

Let’s find uh explicitly. We showed above that u(x, t) = e−rtũ(x), and the same argument
shows that uh(x, t) = e−rtũh(x). The PDE for ũh is evidently

−rũh + µxũh
x + 1

2σ2x2ũh
xx = 0 for 0 < x < h

with
ũh = (x − a) at x = h.

The general solution of −rφ + µxφx + 1
2σ2x2φxx = 0 is

φ(x) = C1x
γ1 + C2x

γ2

where C1, C2 are arbitrary constants and

γi = σ−2
[

1
2σ2 − µ ±

√
(µ − 1

2σ2)2 + 2rσ2

]
.
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We label the exponents so that γ2 < 0 < γ1. To determine ũh we must specify C1 and C2.
Since ũh should be bounded as x → 0 we have C2 = 0. The value of C1 is determined by
the boundary condition at x = h: evidently C1 = h−γ1(h − a). Thus the expected payoff
using sales threshold h is

uh(x, t) =

{
e−rt(h − a)

(x
h

)γ1 if x < h

e−rt(x − a) if x > h.

Any sales threshold is permitted, of course, so we should optimize over h. One verifies by
direct calculation that the optimal threshold is

hopt =
aγ1

γ1 − 1

(notice that γ1 > 1 since µ < r). It is important to spend a moment visualizing the geometry
underneath this optimization, which is shown in Figure 1. As an aid to visualization,
suppose γ1 = 2 (the general case is not fundamentally different, since γ1 > 1). Then the
graph of x−a is a line, while the graph of (h−a)(x/h)2 is a parabola. The two graphs meet
when x−a = (h−a)(x/h)2. This equation is quadratic in x, so it has two roots, x = h and
x = ah/(h − a) — unless h = 2a, in which case the two roots coincide. The optimal choice
h = hopt is the one for which the roots coincide. Some consideration of the figure shows
why: if h < hopt then increasing h slightly raises the parabola and increases uh; similarly if
h > hopt then decreasing h slightly raises the parabola and increases uh.

h < hopt
h = hopt

h > hopt

Figure 1: Graph of uh.

Summing up (and returning to the general case, i.e. we no longer suppose γ1 = 2): the
optimal policy is to sell when the stock price reaches a certain threshold hopt, or immediately
if the present price is greater than hopt; the value achieved by this policy is

u(x, t) = max
h

uh(x, t) =


 e−rt

(
γ1−1

a

)γ1−1 (
x
γ1

)γ1
if x < hopt

e−rt(x − a) if x > hopt.
(3)
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Our figure shows – and it can be verified by direct calculation – that u is C1. In other
words, while for general h the function uh has a discontinuous derivative at h, the optimal
h is also the choice that makes the derivative continuous there. This is not an accident: it
is a general feature of optimal stopping problems.

OK, we have surely found the optimal policy. But we did it by making some guesses.
The proof that our answer is right requires a verification argument. Our prior verification
arguments showed that the solution of a suitable Hamilton-Jacobi-Bellman equation gave
a one-sided bound on the value achieved by any strategy. We shall do something similar
here, but the HJB equation is replaced by a variational inequality.

Claim. Let L be the generator of y (Lφ = µxφx + 1
2σ2x2φxx). Suppose there exists a

function v(x, t) and constant x0 such that

(a) v(x, t) ≥ e−rt(x − a) for all x > 0 and all t;

(b) vt + Lv ≤ 0 for all x > 0 and all t;

(c) v is C1 at x = x0 and smooth everywhere else.

(d) equality holds in (b) for 0 < x < x0 and in (a) for x > x0;

Then for any stopping time τ we have

v(x, t) ≥ Ey(t)=x

[
e−rτ (y(τ) − a)

]
for all x, t.
Explanation. We argue as in Section 5: for any sufficiently differentiable function φ(x, t),

d[φ(y(s), s)] = (φs + Lφ)ds + a term involving dw.

Taking φ = v(x, t), integrating from time t to the stopping time τ , then taking the expected
value, we get

Ey(t)=x [v(y(τ), τ)] − v(x, t) = Ey(t)=x

∫ τ

t
(vs + Lv)(y(s), s) ds

≤ 0 (4)

using (b). Therefore

v(x, t) ≥ Ey(t)=x [v(y(τ), τ)]
≥ Ey(t)=x

[
e−rτ (y(τ) − a)

]
(5)

using (a). Done!

We have glossed over some technical points (for example, if τ is unbounded we should use
this argument on τk = min{τ, k} then let k → ∞). More interesting: we appear not to
have made use of (c) and (d). But notice that we’ve applied Ito’s lemma to a function v
that isn’t smooth. If v were not C1 it would be hopeless: you can’t do second-order Taylor
expansion on a function that’s not at least piecewise C2. Under (c) and (d) the situation
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is not so bad: the terms appearing in Ito’s lemma are uniformly bounded, though vxx is
discontinuous at x0. The discontinuity of vxx turns out to be a minor matter – one can
justify this application of Ito’s lemma (see Oksendal Theorem 10.4.1).

Examining the argument, one sees that it proves more than was stated in the claim. Namely:
if

τ∗ =

{
t if x ≥ x0

first time y(s) reaches x0 if x < x0

then equality holds in both (4) and (5), so v(x, t) is in fact the optimal value and τ∗ is the
optimal stopping time.

The point of all this, of course, is that the function u = maxh uh satisfies conditions (a)-(d)
with x0 = hopt. The only not-entirely-obvious point is that (a) holds for x > x0, i.e. that

v = e−rt(x − a) satisfies vt + Lv ≤ 0 for x > x0. (6)

This can be verified by direct arithmetic: it reduces to the assertion x0 ≥ (ra)/(r − µ),
which follows from the explicit formula for x0 = hopt.

The validity of (6) is of course no accident; here’s a heuristic explanation why it had to
be true. We believe the optimal policy is to sell immediately if the current price is greater
than hopt. So if y(t) = x > hopt we think it would be a mistake to hold the asset a little
longer. Apply the calculation that led to (4) using φ = e−rt(x − a) and τ = t + ∆t, with
∆t chosen small enough that y(t + ∆t) is still greater than hopt to see that

Ey(t)=x [φ(y(t + ∆t), t + ∆t)] − v(x, t) = Ey(t)=x

∫ t+∆t

t
(φs + Lφ)(y(s), s) ds.

We think the left hand side is negative; so we think right hand side is negative. When ∆t
is small the right hand side equals

∆t(φt + Lφ)(x, t) + higher order terms in ∆t.

So we conclude that φt + Lφ < 0 for x > hopt. In short: the correctness of our conjectured
strategy implies the validity of the inequality (a).

The special, simple form of the problem considered above permitted us to find an explicit
solution. For more general stopping problems it is typically not possible to solve the PDE
explicitly. In such settings, conditions (a)-(d) of the verification argument (suitably modified
for the problem of interest) provide the most useful representation of the solution. They
describe the value function as the solution of a “variational inequality” The argument that
the variational inequality is sufficient for optimality is always easy (modulo technicalities),
just as it was above. The proof that the variational inequality has a solution is more difficult,
unless the solution can be constructed more or less explicitly as we did above.

****************************
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American options. An American option differs from a European one in the feature that
it can be exercised at any time. Therefore the associated optimal stopping problem is
to maximize the expected discounted value at exercise, over all possible exercise times.
The decision whether to exercise or not should naturally depend only on present and past
information, i.e. it must be given by a stopping time. Consider, to fix ideas, a put option
with strike K (so the payoff is (K − x)+), for a stock with lognormal dynamics dy =
µyds + σydw, and discount rate r. Then we are interested in

ũ(x) = max
τ

Ey(t)=x

[
e−r(T−t)(K − y(τ))+

]
. (7)

(We call this ũ rather than u to emphasize the link to our earlier discussion: the definition
of ũ discounts the payoff to the initial time t rather than to time 0. It is easy to see that the
right hand side is independent of t.) If you’ve studied continuous-time finance you probably
know that when µ = r, (7) gives the price of a perpetual American put in the Black-Scholes
marketplace. (It is a “perpetual” put because it never expires, i.e. it has no finite maturity
time.) Anyway it makes perfectly good sense to try and evaluate the function ũ defined
this way using the same tools we applied above. This can be done. Here’s an outline of the
answer:

• It’s natural to guess that the optimal policy is determined by an exercise threshold
h as follows: exercise immediately the price is below h; continue to hold if the price
is above h. Clearly we expect h < K since it would be foolish to exercise when the
option is worthless.

• For a given candidate value of h, we can easily evaluate the expected value associated
with this strategy. It solves

−rũh + µxũh
x + 1

2σ2x2ũh
xx = 0 for x > h

and
ũh(x, t) = (K − x) for 0 < x ≤ h.

• To find ũh explicitly, recall that the general solution of the PDE was C1x
γ1 + C2x

γ2

with γ2 < 0 < γ1 given by

γi = σ−2
[

1
2σ2 − µ ±

√
(µ − 1

2σ2)2 + 2rσ2

]
.

This time the relevant exponent is the negative one, γ2, since it’s clear that ũh should
decay to 0 as x → ∞. The constant C2 is set by the boundary condition ũh(h) =
(K − h). Evidently

ũh(x) =

{
(K − h)

(
x
h

)γ2 if x > h

(K − x) if x < h.

• The correct exercise threshold is obtained by maximizing with respect to h. The
optimal value is hopt = Kγ2

γ2−1 , which is less than K as expected.

• When h = hopt the function v = ũh satisfies

7



(a) v ≥ (K − x)+ for all x > 0 and all t;

(b) Lv ≤ 0 for all x > 0 and all t;

(c) v is C1 at x = hopt and smooth everywhere else.

(d) equality holds in (a) for 0 < x < hopt and in (b) for x > hopt

where Lv = −rv + µxvx + 1
2σ2x2vxx.

• Properties (a)-(d) imply, by the usual verification argument, that v is indeed optimal
(i.e. no exercise policy can achieve a better discounted expected value).

STRIKE PRICE

TIME TTIME t

EXERCISE BOUNDARY

(SLOPE = −1)

HOLD

EXERCISE

Figure 2: The exercise boundary of an American option, and its value as a function of stock
price at a given time t

.

What about American options with a specified maturity time T ? The same principles apply,
though an explicit solution formula is no longer possible. The relevant optimal control
problem is almost the same – the only difference is that the option must be exercised no
later than time T . As a result the optimal value becomes a nontrivial function of the start
time t:

ũ(x, t) = max
τ≤T

Ey(t)=x

[
e−r(T−t)(K − y(τ))+

]
.

The exercise threshold h = h(t) is now a function of t: the associated policy is to exercise
immediately if x < h(t) and continue to hold if x > h(t) (see Figure 2). It’s clear, as
before, that h(t) < K for all t. Optimizing h is technically more difficult than in our
previous examples because we must optimize over all functions h(t). The most convenient
characterization of the result is the associated variational inequality: the optimal exercise
threshold h(t) and the associated value function v satisfy

(a) v ≥ (K − x)+ for all x > 0 and all t;

(b) vt + Lv ≤ 0 for all x > 0 and all t;

(c) v is C1 at x = h(t) and smooth everywhere else.
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(d) equality holds in (a) for 0 < x < h(t) and in (b) for x > h(t)

If you accept that (a)-(d) has a solution, its optimality is readily verified by the usual
argument (modulo the usual technicalities).
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