
PDE for Finance Notes, Spring 2000 – Section 6.
Notes by Robert V. Kohn, Courant Institute of Mathematical Sciences. For use only in
connection with the NYU course PDE for Finance, G63.2706, Spring 2000.

Announcements:

• The exam will be Tuesday May 9, at the usual class time. It will be “closed-book”
(no books, no notes), however you may bring two sheets of notes (8.5×11, both sides,
write as small as you like). Last year’s PDE for Finance final exam will give you some
idea what to expect; it is on my web page at the end of the Spring 1999 PDE for
Finance lecture notes. On April 25 I’ll hand out a list of possible exam topics, which
should help you to prepare (or at least to be less nervous).

• There will be one more problem set, HW 6, distributed April 18 and due May 2 (no
extensions – a solution sheet will be distributed May 2).

The linear heat equation and more general parabolic equations. We’ve seen that
linear parabolic equations arise as backward Kolmogorov equations, determining the ex-
pected values of various payoffs (for uncontrolled diffusion processes). They also arise as
forward Kolmogorov equations, determinining the probability distribution of the diffus-
ing state. The simplest special cases are the backward and forward linear heat equations
ut+ 1

2∆u = 0 and ps− 1
2∆p = 0, which are the backward and forward Kolmogorov equations

for Brownian motion. Many features of the general case can be seen especially clearly in this
special case. This section discusses some fundamental properties of the linear heat equation
and more general linear parabolic equations. Standard references include section 2.3 of L.C.
Evans’ book (on reserve) and chapter 7 of F. John’s book (on reserve). Another excellent
source (more elementary than Evans or John, and cheaper too) is R.B. Guenther and J.W.
Lee, Partial Differential Equations of Mathematical Physics and Integral Equations (Dover
reprint, 1996), chapter 5.

Our attention is restricted to linear parabolic equations. This class includes the forward and
backward Kolmogorov equations associated with a stochastic differential equation. However
it does not include the Hamilton-Jacobi equation of a stochastic control problem, which is
nonlinear. The analysis of such nonlinear parabolic equations lies beyond the scope of this
course.

****************************

Parabolic differential equations. The general linear parabolic differential equation in
one space dimension has the form

ft = α(x, t)fxx + β(x, t)fx + γ(x, t)f + δ(x, t)
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with α(x, t) > 0. The initial value f(x, t0) must be specified (and also the boundary data
if x is restricted to a an interval or a half-space). The equation then determines f(x, t) for
t > t0. The analogous multidimensional problem is

∂f

∂t
=

∑
i,j

αij(x, t)
∂2f

∂xi∂xj
+

∑
i

βi(x, t)
∂f

∂xi
+ γ(x, t)f + δ(x, t) (1)

where αij(x, t) is a positive definite matrix. We shall always assume, without explicit
mention, that f is smooth enough for all terms in the PDE to make sense and be continuous
(thus f is at least C1 in time and C2 in space). Parabolic equations have a regularizing
property (provided α > 0), so less regular solutions can occur only if the coefficients α, β,
etc. are themselves irregular.

Explicit solution formulas are available only in very special cases – for example when α, β
and γ are independent of x and t. However the solution can be found numerically for any
(reasonable) choices of α, β, γ, and δ. Moreover the qualitative behavior of solutions – and
the behavior of numerical solution schemes – is largely captured by the simplest special
case, the linear heat equation

ft = ∆f

with the usual notation ∆f = ∂2f/∂x2
1 + . . . + ∂2f/∂x2

n. Therefore we shall concentrate
most of our attention on this special case.

A reminder why we care. For a diffusion described by the stochastic differential equation

dyi = fi(y, t)dt +
∑
j

gij(y, t)dwj

the backward Kolmogorov equation for u(x, t) is

∂u

∂t
+

∑
i

fi(x, t)
∂u

∂xi
+

∑
i,j

aij(x, t)
∂2u

∂xi∂xj
= 0

and the forward Kolmogorov equation for p(z, s) is

∂p

∂s
+

∑
i

∂

∂zi
(fi(z, s)p) −

∑
i,j

∂

∂zi∂zj
(aij(z, s)p) = 0

where
aij = 1

2

∑
k

gikgjk.

Notice that a = ggT is always positive semidefinite, and it is positive definite exactly if the
rows of the matrix gij are linearly independent.

The backward Kolmogorov equation is almost in the form (1), as we see by rewriting it
as ut = −∑

aij∇2
iju − ∑

fi∇iu. The second-order term has a minus sign, whereas the
corresponding term in (1) has a plus sign, but this is easily corrected by the change of
variables t = −τ . So the backward Kolmogorov equation is a linear parabolic equation
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“running backward in time” – and its natural problems are final-value problems rather
than initial-value problems.

The forward Kolmogorov equation can be put in the form (1) by carrying out the differen-
tiations. (For example: writing ∂(fip)/∂zi = p(∂fi/∂zi) + fi(∂p/∂zi).) Thus it is special
case of (1) provided that the drift fi and volatility gij are sufficiently smooth functions of
space.

The preceding two paragraphs assume that a = ggT is nonsingular, i.e. that the matrix
g has independent rows. This means, roughly speaking, that in the stochastic differential
equation no component of y behaves deterministically. Not every financial model has this
property; it is sometimes natural to treat some state variables deterministically and others
stochastically. Such problems lead to degenerate parabolic equations, whose analysis is more
subtle than the strictly parabolic case considered here.

The initial-value problem for the linear heat equation. Consider the equation

ft = ∆f for x ∈ Rn, t > 0

with specified data f(x, 0) = f0(x). Here are some basic facts:

(a) There is an explicit solution formula

f(x, t) = (4πt)−n/2
∫

e−|x−y|2/4tf0(y) dy. (2)

(b) This is the unique solution, among functions f with reasonable growth as |x| → ∞.

(c) The solution satisfies a maximum principle.

(d) The solution is smooth for all t > 0, even if f0 is not smooth.

(e) It is essential that we solve this equation forward (not backward) in time.

Concerning (a). We know to expect a solution formula of this type, because the PDE
is the forward Kolmogorov equation associated to

√
2w where w is Brownian motion. The

solution formula for ft = α∆f with α constant is easily obtained from (2) by change of
variables; it is

f(x, t) = (4παt)−n/2
∫

e−|x−y|2/4αtf0(y) dy.

Taking α = 1/2 we obtain this interpretation of (2): the probability of a Brownian particle
being at y in time t, given that it started at x at time 0, is (2πt)−n/2

∫
e−|x−y|2/2t.

How could we have found the solution formula? It is immediately clear from the definition
of Brownian motion, according to which w(t) is a Gaussian random variable with mean 0
and variance t. Viewing ft − 1

2∆f = 0 as a forward Kolmogorov equation, we see that for
given t, f(·, t) is the probability density of a Gaussian random variable with mean 0 and
variance t. Hence the formula for f .
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There are various other, non-probabilistic ways of guessing the solution formula. One uses
the Fourier transform (which turns constant-coefficient PDE’s into ODE’s); see John section
7.1 or Evans section 4.3.

What must we assume concerning the initial data f0? Clearly we need some restriction on
the growth of f0 at ∞, to make the integral on the right hand side of (2) converge. For
example, if f0(x) = exp(c|x|2) with c > 0 then the integral diverges for t > (4c)−1. The
natural growth condition is thus

|f0(x)| ≤ Mec|x|2 (3)

as |x| → ∞. Are there other restrictions on f0? Basically no. The justification of this
statement involves proving that the proposed solution f(x, t), given by (2), does have the
desired “initial value” f0(x), i.e. limt→0 f(x, t) = f0(x). Most textbooks prove this assuming
f0 is continuous, but the standard proof works more generally, e.g. if f0 is just piecewise
continuous. (See e.g. John or Evans for this argument.)

Solutions growing at infinity are uncommon in physics but common in finance, where the
heat equation arises by a logarithmic change of variables from the Black-Scholes PDE (see
e.g. Wilmott-Howison-Dewynne). The payoff of a call is linear in the stock price s as
s → ∞. This leads under the change of variable x = log s to a choice of f0 which behaves
like ex as x → ∞. Of course this lies well within what is permitted by (3). Discontinuous
solutions are also uncommon in physics, but common in finance. A digital option pays a
specified value if the stock price at maturity is greater than a specified value, and nothing
otherwise. This corresponds to a discontinuous choice of f0.

Concerning (b). Thus far we have only really argued that (2) gives a solution of the heat
equation. To show it gives the solution we must demonstrate uniqueness. By linearity this
amounts to showing that

if ft = ∆f for t > 0, and f(x, 0) = 0, then f(x, t) = 0 for all x, t.

We shall show this under the additional assumption that f satisfies the natural growth
condition (3). (It is false without some such hypothesis; see John for a counterexample.)
The argument rests on the maximum principle, so we postpone it till a bit later.

Concerning (c). The maximum principle is an elementary yet far-reaching fact about
solutions of linear parabolic equations. Here is the simplest version:

Let D be a bounded domain. Suppose ft − ∆f ≤ 0 for all x ∈ D and 0 < t < T .
Then the maximum of f in the closed cylinder D̄ × [0, T ] is achieved either
at the “initial boundary” t = 0 or at the “spatial boundary” x ∈ ∂D.

If ft−∆f were strictly negative this would be a calculus exercise. Indeed, f must achieve its
maximum somewhere in the cylinder or on its boundary (we use here that D is bounded).
Our task is to show this doesn’t occur in the interior or at the “final boundary” t = T .
At an interior maximum all first derivatives would vanish and ∂2f/∂x2

i ≤ 0 for each i; but
then ft−∆f ≥ 0, contradicting the hypothesis that ft−∆f < 0. At a final-time maximum
(in the interior of D) all first derivatives in x would still vanish, and we would still have
∂2f/∂x2

i ≤ 0; we would only know ft ≥ 0, but this would still give ft − ∆f ≥ 0, again
contradicting the hypothesis of strict negativity.
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If all we know is ft −∆f ≤ 0 then the preceding argument doesn’t quite apply. But the fix
is simple: we can apply it to fε(x, t) = f(x, t) − εt for any ε > 0. As ε → 0 this gives the
desired result.

There is an analogous minimum principle:

Let D be a bounded domain. Suppose ft − ∆f ≥ 0 for all x ∈ D and 0 < t < T .
Then the minimum of f in the closed cylinder D̄ × [0, T ] is achieved either
at the “initial boundary” t = 0 or at the “spatial boundary” x ∈ ∂D.

It follows from the maximum principle applied to −f . In particular, if ft − ∆f = 0 in the
cylinder then f assumes its maximum and minimum values at the spatial boundary or the
initial boundary. The asymmetry between the initial and final boundaries is one piece of
evidence that time has a “preferred direction” for a parabolic differential equation.

Our proof of the maximum principle generalizes straightforwardly to more general lin-
ear parabolic equations, provided there is no zeroth-order term. For example: if ft −∑

i,j αij(x, t)∇2
ijf − ∑

i βi(x, t)∇if ≤ 0 then f achieves its maximum in D̄ × [0, T ] at the
initial or spatial boundary.

Returning to (b). Uniqueness of the initial-boundary-value problem in a bounded domain
follows immediately from the maximum principle. Since the equation is linear, if there were
two solutions with the same data then their difference would be a solution with data 0. So
the main point is this:

Suppose ft = ∆f for t > 0 and x ∈ D. Assume moreover f has initial data 0
(f(x, 0) = 0 for x ∈ D) and boundary data 0 (f(x, t) = 0 for x ∈ ∂D).
Then f(x, t) = 0 for all x ∈ D, t > 0.

Indeed: the maximum and minimum of f are 0, by the maximum (and minimum) principles.
So f is identically 0 in the cylinder.

To show uniqueness for the initial-value problem in all space one must work a bit harder.
The problem is that we no longer have a spatial boundary – and we mean to allow solutions
that grow at ∞, so the maximum of f(x, t) over all 0 < t < T and x ∈ Rn might well occur
as x → ∞. Subtracting two possible solutions, our task is to show the following:

Suppose ft = ∆f for t > 0 and x ∈ Rn. Assume moreover f has initial data 0
and |f(x, t) ≤ Mec|x|2 for some M and c. Then f(x, t) = 0 for all x ∈ Rn, t > 0.

A brief simplification: we need only show that f = 0 for 0 < t ≤ t0 for some t0 > 0; then
applying this statement k times gives f = 0 for t ≤ kt0 and we can let k → ∞. Another
simplification: we need only show f ≤ 0; then applying this statement to −f we conclude
f = 0.

Here’s the idea: we’ll show f ≤ 0 by applying the maximum principle not to f , but rather
to

g(x, t) = f(x, t) − δ

(t1 − t)n/2
e

|x|2
4(t1−t) .
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for suitable choices of the constants δ and t1. The space-time cylinder will be of the form
D × [0, t0] where D is a large ball and t0 < t1.

Step 1. Observe that gt − ∆g = 0. This can be checked by direct calculation. But a
more conceptual reason is this: the term we’ve subtracted from f is a constant times the
fundamental solution evaluated at ix and t1 − t. The heat equation is invariant under this
change of variables.

Step 2. Let D be a ball of radius r. We know from the maximum principle that the
maximum of g on D× [0, t0] is achieved at the initial boundary or spatial boundary. At the
initial boundary clearly

g(x, 0) < f(x, 0) = 0.

At the spatial boundary we have |x| = r so

g(x, t) = f(x, t) − δ

(t1 − t)n/2
e

r2

4(t1−t)

≤ Mec|x|2 − δ

(t1 − t)n/2
e

r2

4(t1−t)

≤ Mecr2 − δ

t
n/2
1

e
r2

4t1

We may choose t1 so that 1/(4t1) > c. Then when r is large enough the second term
dominates the first one, giving

g(x, t) ≤ 0 at the spatial boundary |x| = r.

We conclude from the maximum principle that g(x, t) ≤ 0 on the entire space-time cylinder.
This argument works for any sufficiently large r, so we have shown that

f(x, t) ≤ δ

(t1 − t)n/2
e

|x|2
4(t1−t)

for all x ∈ Rn and all t < t1. Restricting attention to t < t0 for some fixed t0 < t1, we pass
to the limit δ → 0 to deduce that f ≤ 0 as desired.

Concerning (d). The smoothness of solutions is immediately evident by differentiating
under the integral in the solution formula (2). With slightly more work one can show that
f is in fact real-analytic for t > 0. The point, of course, is that the fundamental solution
K(x, y; t) = (4πt)−n/2e−|x−y|2/4t is a smooth (even analytic) function of x, y, t – though it
gets more and more singular as t → 0. Smoothness of the fundamental solution is a general
feature of (uniformly) parabolic operators; of course the proof is more difficult when we
don’t have an explicit solution formula to point to.

Concerning (e). Is it possible to solve the heat equation with time running “the wrong
way”? Clearly no, in general: by (d), the “wrong way” problem

WRONG WAY ft − ∆f = 0 for t < T , with f(x, T ) = fT (x) WRONG WAY
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has no solution unless fT is smooth. Of course it can have a solution for special choices of
fT – for example we may choose fT by solving an initial-value problem up to time T . In
such a case, the solution may exist for some interval t ∈ (tmin, T ) but it will cease to exist
at some time tmin. (A bounded solution of the heat equation that exists for all negative
time must be constant.)

Here’s another way to see that solving the heat equation forward in time is good, while
solving it backward in time is bad. Consider the initial-boundary-value problem on the unit
interval 0 < x < 1, with f = 0 at the spatial boundary (f(0, t) = f(1, t) = 0). It is natural
to restrict attention to initial data f0 satisfying the same boundary conditions. Such f0 can
be represented as a Fourier sine series:

f0(x) =
∞∑

k=1

ak sin(kπx).

The solution of ft − fxx = 0 with this initial data is

f(x, t) =
∞∑

k=1

ake
−k2π2t sin(kπx). (4)

It clearly exists for all positive time, and decays to 0 as t → ∞. Moreover f(x, t) is smooth
as soon as t > 0, since its 2ith spatial derivative has a Fourier series

D2if(x, t) =
∞∑

k=1

ake
−k2π2t(−1)ik2iπ2i sin(kπx)

and the sum
∑

k a2
kk

4ie−2k2π2t is finite for any t > 0. (We need assume only that
∑

a2
k < ∞,

i.e. f0 is in L2. For any fixed t > 0 the weight k4ie−2k2π2t is less than 1 once k is sufficiently
large. This argument shows that D2if is in L2 for all i; this implies that f is smooth in the
conventional sense.)

The preceding explicit solution can also be used backward in time – if the series converges.
Evidently as t decreases the kth frequency blows up exponentially fast – and higher fre-
quencies blow up faster. Thus solving the heat equation backward in time is very unstable:
the high-frequency component of the final-time data is amplified very rapidly, though it
may contribute negligibly to the final-time data in any standard norm.

Might there still be some interest in solving the heat equation the “wrong way” in time?
Sure. This is the simplest example of “deblurring,” a typical task in image enhancement.
Consider a photograph taken with an out-of-focus camera. Its image is (roughly speaking)
the convolution of the true image with a Gaussian of known variance. Finding the orig-
inal image amounts to backsolving the heat equation with the blurry photo as final-time
data. (The task of fixing the Hubble telescope’s pictures was more complicated – and more
nonlinear – but not entirely unlike this.)

Backsolving the heat equation is a typical example of an ill-posed problem – one whose
answer depends in an unreasonably sensitive way on the data, and which may not even
have a solution except for very special data.
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Boundary value problems and a numerical solution scheme. When a parabolic
equation is solved in a bounded spatial domain one must supply boundary data as well as
initial data. In view of Section 5 it is natural to consider specifying f(x, t) for x on the
spatial boundary. (This is one acceptable type of boundary condition, but by no means
the only one.) The maximum principle assures uniqueness in this setting, but some other
argument is needed to see existence. Let us sketch how the solution can be constructed
using a simple (explicit, finite-difference) numerical approximation scheme. We focus for
simplicity on the linear heat equation ft = fxx with the unit interval 0 < x < 1 as our
spatial interval. If the timestep is ∆t and the spatial length scale is ∆x then the numerical
f is defined at (x, t) = (j∆x, k∆t). The explicit finite difference scheme determines f at
time (j + 1)∆t given f at time j∆t by reading it off from

f((j + 1)∆t, k∆x) − f(j∆t, k∆x)
∆t

=
f(j∆t, (k + 1)∆x) − 2f(j∆t, k∆x) + f(j∆t, (k − 1)∆x)

(∆x)2
.

Notice that we use the initial data to get started, and we use the boundary data when k∆x
is next to the boundary.

This method has the stability restriction

∆t <
1
2
(∆x)2. (5)

To see why, observe that the numerical scheme can be rewritten as

f((j+1)∆t, k∆x) = ∆t
(∆x)2 f(j∆t, (k+1)∆x)+ ∆t

(∆x)2 f(j∆t, (k−1)∆x)+(1−2 ∆t
(∆x)2 )f(j∆t, k∆x).

If 1− 2 ∆t
(∆x)2 > 0 then the scheme has a discrete maximum principle: if f ≤ C initially and

at the boundary then f ≤ C for all time; similarly if f ≥ C initially and at the boundary
then f ≥ C for all time. The proof is easy, arguing inductively one timestep at a time. (If
the stability restriction is violated then the scheme is unstable, and the discrete solution
can grow exponentially.)

One can use this numerical scheme to prove existence (see e.g. John). But let’s be less
ambitious: let’s just show that the numerical solution converges to the solution of the PDE
as ∆x and ∆t tend to 0 while obeying the stability restriction (5). The main point is that
the scheme is consistent, i.e.

g(t + ∆t, x) − g(t, x)
∆t

→ gt as ∆t → 0

and
g(t, x + ∆x) − 2g(t, x) + g(t, x − ∆x)

(∆x)2
→ gxx as ∆x → 0

if g is smooth enough. Let f be the numerical solution, g the PDE solution, and consider
h = f − g evaluated at gridpoints. Consistency gives

h((j + 1)∆t, k∆x) = ∆t
(∆x)2 h(j∆t, (k + 1)∆x) + ∆t

(∆x)2 h(j∆t, (k − 1)∆x)

+(1 − 2 ∆t
(∆x)2 )h(j∆t, k∆x) + ∆te(j∆t, k∆x)
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with |e| uniformly small as ∆x and ∆t tend to zero. Stability – together with the fact that
h = 0 initially and at the spatial boundary – gives

|h(j∆t, k∆x)| ≤ j∆t max |e|.

It follows that h(t, x) → 0, uniformly for bounded t = j∆t, as ∆t and ∆x tend to 0.

Our argument captures, in this special case, a general fact about numerical schemes: that
stability plus consistency implies convergence.
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