
PDE for Finance Notes, Spring 2000 – Section 5.
Notes by Robert V. Kohn, Courant Institute of Mathematical Sciences. For use only in
connection with the NYU course PDE for Finance, G63.2706, Spring 2000.

Announcements: Some administrative matters:

• I’ll be out of town April 3-6. Therefore there will be no class on April 4, and I will
not hold office hours on April 6.

• The final lecture will be May 2 (not, as the official NYU calendar would have it, April
25). The final exam will be May 9.

• The solutions to HW4 will be distributed 3/28. The next problem set, HW5, will also
be distributed 3/28.

Links between stochastic differential equations and PDE. A stochastic differential
equation, together with its initial condition, determines a diffusion process. We can use it
to define a deterministic function of space and time in two fundamentally different ways:

(a) by considering the “expected value” of a suitable cost or utility, as a function of the
initial position and time;

(b) by considering the probability of being in a certain state at a given time, given knowl-
edge of the initial state and time.

Viewpoint (a) is closely related to stochastic control. In fact it’s just the analysis of “trivial”
control problems, where the system is stochastic but there is in fact no control. Thus we
already know what to do – though of course we have some things to pull together. It leads to
analysis of a special PDE associated with the stochastic process, the backward Kolmogorov
equation. When we take discounting into consideration we get the Feynman-Kac formula.

Viewpoint (b) is different from (a), but not unrelated. It is in fact dual to viewpoint (a), in
a sense that we will make precise. The evolving probability density solves a different PDE,
the forward Kolmogorov equation. It is in fact the adjoint of the backward Kolmogorov
equation.

If you know a little finance, you know that the value of a European option can be determined
in two different ways: (i) as the expected discounted value of the payoff (with respect to
the risk-neutral probability), and (ii) as the solution of the Black-Scholes partial differential
equation. The backward Kolmogorov equation and the Feynman-Kac formula provide the
mathematical framework for relating these two approaches.

The backward and forward Kolmogorov equations (and the relation between them) is dis-
cussed, for example, in Fleming and Rishel. My discussion is largely a more expository, less
rigorous version of what’s there.

********************
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Expected values and the backward Kolmogorov equation. Here’s the most basic
version of the story. Suppose y(t) solves the scalar stochastic differential equation

dy = f(y, t)dt + g(y, t)dw,

and let
u(x, t) = Ey(t)=x [Φ(y(T ))]

be the expected value of some payoff Φ at maturity time T > t, given that y(t) = x. Then
u solves

ut + f(x, t)ux + 1
2g2(x, t)uxx = 0 for t < T , with u(x, T ) = Φ(x). (1)

Sounds familiar, right? It’s just like our discussion of stochastic control – except that there
is no control, hence no need to maximize over anything.

This is a special case of arguments we’ve done before. Let’s review the explanation anyway.
For any function φ(y, t), Ito’s lemma gives

d(φ(y(t), t)) = φydy + 1
2φyydydy + φtdt

= (φt + fφy + 1
2g2φyy)dt + gφydw.

Choosing φ = u, the solution of (1), we get

u(y(T ), T ) − u(y(t), t) =
∫ T

t
(ut + fyy + 1

2g2uyy)dt +
∫ T

t
guydw.

Taking the expected value and using the PDE gives

Ey(t)=x [Φ(y(T ))] − u(x, t) = 0

which is precisely our assertion.

That was the simplest case. It can be jazzed up in many ways. We discuss some of them:

Vector-valued diffusion. Suppose y solves a vector-valued stochastic differential equation

dyi = fi(y, t)dt +
∑
j

gij(y, t)dwj ,

where each component of w is an independent Brownian motion. Then

u(x, t) = Ey(t)=x [Φ(y(T ))]

solves
ut + Lu = 0 for t < T , with u(x, T ) = Φ(x),

where L is the differential operator

Lu(x, t) =
∑

i

fi
∂u

∂xi
+ 1

2

∑
i,j,k

gikgjk
∂2u

∂xi∂xj
.
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The justification is just as in the scalar case, using the multidimensional version of Ito’s
lemma. The operator L is called the “infinitesimal generator” of the diffusion process y(t).

The Feynman-Kac formula. We discuss the scalar case first, for clarity. Consider as above
the solution of

dy = f(y, t)dt + g(y, t)dw

but suppose we are interested in a suitably “discounted” final-time payoff of the form:

u(x, t) = Ey(t)=x

[
e−
∫ T

t
b(y(s))dsΦ(y(T ))

]
(2)

for some specified function b(y). Then u solves

ut + f(x, t)ux + 1
2g2(x, t)uxx − b(x)u = 0 (3)

instead of (1). (Its final-time condition is unchanged: u(x, T ) = Φ(x).) If you know some
finance you’ll recognize that when y is log-normal and b is the interest rate, (3) is precisely
the Black-Scholes partial differential equation.

To explain (3), we must calculate the stochastic differential d[z1(s)φ(y(s), s)] where z1(s) =
e−
∫ s

t
b(y(r))dr . The multidimensional version of Ito’s lemma gives

d[z1(s)z2(s)] = z1dz2 + z2dz1 + dz1dz2.

We apply this with z1 as defined above and z2(s) = φ(y(s), s). Ito’s lemma (or ordinary
differentiation) gives

dz1(s) = −z1b(y(s))ds

and we’re already familiar with the fact that

dz2(s) = (φs + fφy + 1
2g2φyy)ds + gφydw

= (φs + Lφ)ds + gφydw.

Notice that dz1dz2 = 0. Applying the above with φ = u, the solution of the PDE (3), gives

d

(
e−
∫ s

t
b(y(r))dru(y(s), s)

)
= z1dz2 + z2dz1

= z1 [(us + Lu)ds + guydw] − z1ubds

= z1guydw.

The right hand side has expected value 0, so

Ey(t)=x[z1(T )z2(T )] = z1(t)z2(t) = u(x, t)

as asserted.

A moment’s thought reveals that vector-valued case is no different. The discounted expected
payoff (2) solves the PDE

ut + Lu − bu = 0
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where L is the infinitesimal generator of the diffusion y.

Running payoff. Suppose we are interested in

u(x, t) = Ey(t)=x

[∫ T

t
Ψ(y(s), s)ds

]

for some specified function Ψ. Then u solves

ut + Lu + Ψ(x, t) = 0.

The final-time condition is u(x, T ) = 0, since we have included no final-time term in the
“payoff.” The proof is hardly different from before: by Ito’s lemma,

d[u(y(t), t)] = (ut + Lu)dt + ∇u · g · dw

= −Ψ(y(t), t)dt + ∇u · g · dw.

Integrating and taking the expectation gives

Ey(t)=x [u(y(T ), T )] − u(x, t) = Ey(t)=x

[
−
∫ T

t
Ψ(y(s), s)ds

]
.

This gives the desired assertion, since u(y(T ), T ) = 0.

Boundary value problems and exit times. The preceding examples use stochastic integration
from time t to a fixed time T , and they give PDE’s that must be solved for all x ∈ Rn.
It’s also interesting to consider integration from time t to the first time y exits from some
specified region. The resulting PDE must be solved on this region, with suitable boundary
data.

Let D be a region in Rn. Suppose y is an Rn-valued diffusion solving

dy = f(y, s)ds + g(y, s)dw for s > t, with y(t) = x

with x ∈ D. Let

τ(x) = the first time y(s) exits from D, if
prior to T ; otherwise τ(x) = T .

This is an example of a “stopping time” (key feature: the statement “τ(x) < t” is Ft-
measurable; in other words, knowledge of events up to time t determines whether or not
the process has exited from D before time t). Suppose we are interested in

u(x, t) = Ey(t)=x

[∫ τ(x)

t
Ψ(y(s), s)ds + Φ(y(τ(x)), τ(x))

]
.

Then u solves
ut + Lu + Ψ = 0 for x ∈ D
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with boundary condition
u(x, t) = Φ(x, t) for x ∈ ∂D (4)

and final-time condition
u(x, T ) = Φ(x, T ) for all x ∈ D. (5)

The justification is entirely parallel to our earlier examples. The only change is that we
integrate, in the final step, to the stopping time τ rather than the final time T . (This is
permissible for any stopping time satisfying E[τ ] < ∞.)

There’s something slightly misleading about our notation in (4)-(5). We use the same
notation Φ for both the boundary condition (4) and the final-time condition (5) because
they come from the same term in the utility: y(τ(s)) where τ is the time the curve (y(s), s)
exits from the cylinder D × [0, T ]. But Φ should be thought of as representing two distinct
functions – one at the spatial boundary ∂D × [0, T ], the other at the final time boundary
D × {T} (see the figure). These two functions need have nothing to do with one another.

t

x

T

D

Φ|∂D×(0,T )

Φ|D×{T}

Figure 1: Distinguishing between the two different parts of Φ.

Often one is chosen to be zero, while the other is nontrivial. [A financial example: when
one values a barrier option using the risk-neutral expectation of the payoff, Φ is zero at the
knock-out price, and it equals the payoff at the maturity time.]

Elliptic boundary-value problems. Now suppose f and g in the stochastic differential equa-
tion don’t depend on t, and for x ∈ D let

τ(x) = the first time y(s) exits from D.

(Unlike the previous example, we do not impose a final time T ). Suppose furthermore the
process does eventually exit from D, (more precisely: assume E[τ(x)] < ∞, for all x ∈ D).
Then

u(x) = Ey(0)=x

[∫ τ(x)

0
Ψ(y(s))ds + Φ(y(τ(x)))

]

solves
Lu + Ψ = 0 for x ∈ D,
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with boundary condition
u = Φ for x ∈ ∂D.

The justification is again entirely parallel to our earlier examples. Notice the analogy with
the “least arrival time” problems of deterministic optimal control.

Application: some properties of the Brownian motion process. Let us use these results to
deduce – by solving appropriate PDE’s – some properties of the Brownian motion process.
(This discussion is taken from Wilmott’s (new) book and Oksendal’s example 7.4.2. See
also Oksendal’s exercises 7.4 and 7.9 for related material).

Question 1. Consider n-dimensional Brownian motion starting at x. What is the mean
time it takes to exit from a ball of radius R, for R > |x|? Answer: apply the last example
with f = 0, g = identity matrix, Ψ = 1, Φ = 0. It tells us the mean exit time is the solution
u(x) of

1
2∆u + 1 = 0

in the ball |x| < R, with u = 0 at |x| = R. The (unique) solution is

u(x) =
1
n

(R2 − |x|2).

(To do this calculation we must know in advance that the expected exit time is finite. We’ll
justify this as Question 3 below.)

Question 2. Consider the scalar lognormal process

dy = µydt + σydw

with µ and σ constant. Starting from y(0) = x, what is the mean exit time from a specified
interval (a, b) with a < x < b? Answer: the mean exit time u(x) solves

µxux + 1
2σ2x2uxx + 1 = 0 for a < x < b

with boundary conditions u(a) = u(b) = 0. The solution is

u(x) =
1

1
2σ2 − µ

(
log(x/a) − 1 − (x/a)1−2µ/σ2

1 − (b/a)1−2µ/σ2 log(b/a)

)

(readily verified by checking the equation and boundary conditions).

Question 3: Returning to the setting of Question 1, how do we know the mean exit time
is finite? Answer: assume D is a bounded domain in Rn, and y(s) is multidimensional
Brownian motion starting at x ∈ D. Recall that by Ito’s lemma, t → φ(y(t)) satisfies

dφ = ∇φdw + 1
2∆φdt (6)

for any function φ. Let’s apply this with φ(y) = |y|2, integrating in time up to the stopping
time

τT (x) = min{τ(x), T} =

{
first time y(s) exits from D if less than T

T otherwise.
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We get

E
[
|y(τT (x))|2

]
− |x|2 =

1
2

∫ τT (x)

0
∆φ(y(s))ds (7)

= nE [τT (x)]

since ∆φ = 2n. Now let T → ∞. The left hand side of (7) stays finite, since we’re
considering a bounded domain, and by definition y(τT (x)) is either in D or on the boundary
of D. Thus we conclude that

lim
T→∞

E [τT (x)] < ∞.

It follows (using the monotone convergence theorem, from real variables) that the exit time
τ = limT→∞ τT is almost surely finite, and E[τ ] < ∞, for any starting point x ∈ D.

Question 4: Consider Brownian motion in Rn, starting at a point x with |x| = b. Given
r < b, what is the probability that the path ever enters the ball of radius r centered at 0?
Answer: for n = 1, 2 this probability is 1. (Interpretation: Brownian motion is “recurrent
in dimensions 1 and 2 – it comes arbitrarily close to any point, infinitely often, regardless
of where it starts.) In higher dimensions the situation is different: in dimension n ≥ 3 the
probability of entering the ball of radius r is (b/r)2−n. (Interpretation: Brownian motion is
“transient” in dimension n ≥ 3.)

Consider first the case n ≥ 3. We use the stopping time τk = first exit time from the annulus

Dk = {r < |x| < 2kr}.
Since Dk is bounded, E[τk] < ∞ and we can integrate the stochastic differential equation
(6) up to time τk. Let’s do this with the special choice

φ(y) = |y|2−n.

This φ solves Laplace’s equation ∆φ = 0 away from its singularity at y = 0. (The singularity
does not bother us, since we only evaluate φ at points y(s) ∈ Dk and 0 does not belong to
Dk.) The analogue of (7) is

E
[
|y(τk)|2−n

]
− b2−n =

1
2

∫ τk

0
∆φ(y(s))ds = 0.

If pk is the probability that y leaves the annulus Dk at radius r, and qk = 1 − pk is the
probability that it leaves the annulus at radius 2kr, we have

r2−npk + (2kr)2−nqk = b2−n.

As k → ∞ this gives pk → (b/r)2−n, as asserted.

The case n = 2 is treated similarly, using

φ(y) = log y,

which solves ∆φ = 0 in the plane, away from y = 0. Arguing as before we get

pk log r + qk log(2kr) = log b.
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As k → ∞ this gives qk → 0. So pk → 1, as asserted.

The case n = 1 is similar to n = 2, using φ(y) = |y|.

****************************

Transition probabilities and the forward Kolmogorov equation. We’ve shown that
when the state evolves according to a stochastic differential equation

dyi = fi(y, t)dt +
∑
j

gij(y, t)dwj

the expected final position
u(x, t) = Ey(t)=x [Φ(y(T ))]

solves the backward Kolmogorov equation

ut +
∑

i

fi
∂u

∂xi
+ 1

2

∑
i,j,k

gikgjk
∂2u

∂xi∂xj
= 0 for t < T , with u = Φ at t = T . (8)

We can write the backward Kolmogorov equation as

ut + Lu = 0 (9)

with

Lu =
∑

i

fi
∂u

∂xi
+
∑
i,j

aij
∂2u

∂xi∂xj
, (10)

where aij = 1
2

∑
k gikgjk = 1

2(ggT )ij .

The solution of the stochastic differential equation is a Markov process, so it has a well-
defined transition probability

p(z, s;x, t) = probability of being at z at time s, given that it started at x at time t.

More precisely: p(·, s;x, t) is the probability density of the state at time s, given that it
started at x at time t. Of course p is only defined for s > t. To describe a Markov process,
p must satisfy the Chapman-Kolmogorov equation

p(z, s;x, t) =
∫

Rn
p(z1, s1;x, t)p(z, s; z1, s1) dz1

for any s1 satisfying t < s1 < s. Intuitively: the state can get from (x, t) to (z, s) by way
of being at various intermediate states z1 at a chosen intermediate time s1. The Chapman-
Kolmogorov equation calculates p(z, s;x, t) by adding up (integrating) the probabilities of
getting from (x, t) to (z, s) via (z1, s1), for all possible intermediate positions z1.

How should we visualize p? Consider first the case when y is multidimensional Brownian
motion. Then p(·, s;x, t) is the density of a Gaussian random variable with mean x and
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variance s − t. The graph of z → p(z, s;x, t) always has volume 1 below it (since p is a
probability density); as s → ∞ its maximum value tends to 0 (a Brownian particle diffuses
further and further away, on average, as time increases); as s → t it becomes infinitely tall
and thin (at time s ≈ t the Brownian particle is very close to its initial position x). The
situation for a general stochastic differential equation is similar: p becomes infinitely tall and
thin, concentrating at z = x, as s → t; and if ggT > 0 then the graph of p keeps spreading
as s → ∞. Of course in the general case p does not describe a Gaussian distribution, and
there is no simple formula for the mean or variance – they are simply the mean and variance
of y(s).

If the stochastic differential equation does not involve time explicitly, then the transition
probability depends only on the “elapsed time”:

if dy = f(y)dt + g(y)dw with f, g depending only on y, then p(z, s;x, t) = p(z, s − t;x, 0).

If the stochastic differential equation does not involve space explicitly, then the transition
probability depends only on the “relative position”:

if dy = f(t)dt + g(t)dw with f, g depending only on t, then p(z, s;x, t) = p(z − x, s; 0, t).

The initial position of a Markov process need not be deterministic. Even if it is (e.g. if
y(0) = x is fixed), we may wish to consider a later time as the “initial time” (for example
in deriving the Hamilton-Jacobi-Bellman equation). The transition probability determines
the evolution of the spatial distribution, no matter what its initial value: if ρ0(x) is the
probability density of the state at time t then

ρ(z, s) =
∫

Rn
p(z, s;x, t)ρ0(x) dx (11)

gives the probability density (as a function of z) at any time s > t.

The crucial fact about the transition probability is this: it solves the forward Kolmogorov
equation in s and z:

−ps −
∑

i

∂

∂zi
(fi(z, s)p) + 1

2

∑
i,j,k

∂2

∂zi∂zj
(gik(z, s)gjk(z, s)p) = 0 for s > t, (12)

with initial condition
p = δx(z) at s = t.

We can write the forward Kolmogorov equation as

−ps + L∗p = 0 (13)

with

L∗p = −
∑

i

∂

∂zi
(fip) +

∑
i,j

∂2

∂zi∂zj
(aijp) . (14)
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Here aij = 1
2(ggT )ij just as before. The initial condition p = δx(z) encapsulates the fact,

already noted, that the graph of p(·, s;x, t) becomes infinitely tall and thin at x as s decreases
to t. The technical meaning is that∫

Rn
p(z, s;x, t)f(z) dz → f(x) as s decreases to t (15)

for any continuous f .

Recall that if the initial state distribution is ρ0 then the evolving distribution is ρ(z, s) =∫
p(z, s;x, t)ρ0(x) dx. This function ρ(z, s) automatically solves the forward equation (just

bring the derivatives under the integral, and use that p solves it). The initial condition on
p is just what we need to have ρ(z, s) → ρ0(z) as s → t. (Demonstration: multiply (15) by
ρ0(x) and integrate in x to see that∫

ρ(z, s)f(z) dz =
∫

p(z, s;x, t)f(z)ρ0(x) dzdx →
∫

f(x)ρ0(x) dx

as s → t. Since this is true for every continuous f , we conclude that ρ(z, s) converges
[weakly] to ρ0(z) as s → t.)

Please note that the forward Kolmogorov equation describes the probability distribution
by solving an initial-value problem, while the backward Kolmogorov equation describes
the expected final payoff by solving a final-value problem. Students familiar with pricing
options via binomial trees will find this familiar. The stock prices at various nodes of a tree
are determined by working forward in time; the option values at various nodes of a tree are
determined by working backward in time.

Notice that the forward and backward Kolmogorov equations are, in general, completely
different. There is one case, however, when they are closely related: for Brownian motion
the forward equation starting at t = 0 is

ps − 1
2∆p = 0 for s > 0

while the backward equation with final time T is

ut + 1
2∆u = 0 for t < T .

In this special case the backward equation is simply the forward equation with time reversed.
More careful statement: if u(x, t) solves the backward equation then ũ(z, s) = u(z, T − s)
solves the forward equation, and conversely. This is an accident, associated with the the
self-adjointness of the Laplacian. The situation is different even for Brownian motion with
constant drift f : then the forward equation is ps + f · ∇p − 1

2∆p = 0, while the backward
equation is ut + f · ∇u + 1

2∆u = 0, and the two are not equivalent under time-reversal.

Students with a background in physical modeling will be accustomed to equations of the
form vt = div (a(x)∇v). Neither the forward nor the backward Kolmogorov equation has
this form. Such equations are natural in physics, but not in problems from control theory
and stochastic differential equations.
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Testing the plausibility of the forward equation. We will explain presently why the
forward equation holds. But first let’s get used to it by examining some consequences and
checking some special cases. Let ρ0(x) be the probability density of the state at time 0, and
consider

ρ(z, s) =
∫

p(z, s;x, 0)ρ0(x) dx

for s > 0. It gives the probability density of the state at time s.

Checking the integral. Since ρ is a probability density we expect that
∫

ρ(z, s) dz = 1 for all
s. In fact, from the forward equation

d

ds

∫
ρ dz =

∫
ρs dz

=
∫

L∗ρ dz

= 0

since each term of L∗ρ is a perfect derivative. (Here and below, we repeatedly integrate
by parts, with no “boundary terms” at ±∞. We are implicitly assuming that ρ and its
derivatives decay rapidly as z → ±∞. This is true, provided the initial distribution ρ0 has
this property.)

If the stochastic differential equation has no drift then the expected position is independent
of time. In general, E[y(s)] − E[y(0)] = E

∫ s
0 f(y(r), r) dr since the expected value of the

integral dw vanishes. Thus when f = 0 the expected position E[y(s)] is constant. Let’s
prove this again using the forward equation:

d

ds
(expected position) =

d

ds

∫
zρ(z, s) dz

=
∫

zρs(z, s) dz

=
∫

zL∗ρ(z, s) dz

= 0 when f = 0.

The last step is the result of integration by parts; for example, if y is scalar valued (dy =
g(y, t)dw) we have ∫

zL∗ρ dz = 1
2

∫
z
(
g2ρ

)
zz

dz

= −1
2

∫ (
g2ρ

)
z

dz

= 0.

The special case f = constant, g = 0. If g = 0 then we’re studying a deterministic motion.
If in addition f = constant then the solution is explicit and very simple: y(t) = y(0) + ft.
Clearly

Prob of being at z at time s = Prob of being at z − fs at time 0,
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whence
ρ(z, s) = ρ0(z − fs).

In particular, ρs + f ·∇ρ = 0, which agrees with the forward equation (since f is constant).

Biting the bullet. Enough playing around; let’s explain why the forward equation holds.
The first main ingredient is the observation that

Ey(t)=x [Φ(y(T ))] =
∫

Φ(z)p(z, T ;x, t) dz. (16)

We know how to determine the left hand side (by solving the backward equation, with final
value Φ at t = T ). This relation determines the integral of p(·, T ;x, t) against any function
Φ, for any value of x, t, T . This is a lot of information about p – in fact, it fully determines
p. Our task is to make this algorithmic, i.e. to explain how p can actually be computed.
(The answer, of course, will be to solve the forward equation in z and s.)

The second main ingredient is the relation between L and L∗. Briefly: L∗ is the adjoint of
L in the L2 inner product. Explaining this: recall from linear algebra that if A is a linear
operator on an inner-product space, then its adjoint A∗ is defined by

〈Ax, y〉 = 〈x,A∗y〉.
When working in Rn we can represent A by a matrix, and A∗ is represented by the transpose
AT . The situation is similar here, but our inner product space consists of all (square-
integrable, scalar-valued) functions on Rn, with inner product

〈v,w〉 =
∫

Rn
v(x)w(x) dx.

We claim that
〈Lv,w〉 = 〈v,L∗w〉. (17)

When y is scalar-valued our claim says that∫
R

(
fvx + 1

2g2vxx

)
w dx =

∫
R

v
(
−(fw)x + 1

2(g2w)xx

)
dx.

This is a consequence of integration by parts. For example, the first term on the left equals
the first term on the right since∫

R
[fw]vx dx = −

∫
R
[fw]xv dx.

The second term on each side matches similarly, integrating by parts twice. Notice that f
and g can depend on time as well as space; it doesn’t change the argument. The proof of
(17) when y is vector valued is essentially the same as the scalar case.

The third main ingredient is hiding in our derivation of the backward equation. We know
from this derivation that

Ey(t)=x [φ(y(T ), T )] − φ(x, t) = Ey(t)=x

[∫ T

t
(φs + Lφ)(y(s), s) ds

]
(18)
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for any function φ(y, s). Our main use of this relation up to now was to choose φ so that
the right hand side vanished, i.e. to choose φ to solve the backward equation. But we don’t
have to make such a restrictive choice: relation (18) holds for any φ.

Let’s put these ingredients together. Rewriting (18) using the transition probabilities gives
∫

Rn
φ(z, T )p(z, T ;x, t) dz − φ(x, t) =

∫ T

t

∫
Rn

(φs + Lφ)(z, s)p(z, s;x, t) dzds. (19)

Using (17) and doing the obvious integration by parts in time, the right hand side becomes
∫ T

t

∫
Rn

−φps + φL∗p dzds +
∫

Rn
φ(z, s)p(z, s;x, t) dz

∣∣∣∣s=T

s=t
. (20)

This is true for all φ. Since the left hand side of (19) involves only the initial and final times
(t and T ) we conclude that

−ps + L∗p = 0.

Therefore (19)-(20) reduce to∫
Rn

φ(z, t)p(z, t;x, t) dz = φ(x, t)

for all φ, which is what we mean by the initial condition “p = δx when s = t”. Done!

The argument is simple; but maybe it’s hard to encompass. To recapitulate its essence,
let’s give a new proof (using the forward equation) of the fact (known via Ito calculus) that

u solves the backward equation =⇒ d

ds
E [u(y(s), s)] = 0.

In fact: if ρ(z, s) is the probability distribution of the state at time s,

d

ds
E [u(y(s), s)] =

d

ds

∫
u(z, s)ρ(z, s) dz

=
∫

usρ + uρs dz

=
∫

usρ + uL∗ρ dz

=
∫

usρ + (Lu)ρ dz

= 0

using in the last step our hypothesis that u solves the backward equation.

Boundary value problems. The preceding discussion concerned the backward and for-
ward Kolmogorov equations in all space. We also considered the backward Kolmogorov
equation in a bounded domain. Let’s consider just the specific case when the boundary
condition at ∂D is u = 0:

ut + Lu = 0 for x ∈ D, t < T
u(x, T ) = φ(x) at t = T
u(x, t) = 0 for x ∈ ∂D.
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We know that
u(x, t) = Ey(t)=x [Φ(y(τ), τ)]

where τ = τ(x) is the exit time from D (or T , if the path doesn’t exit by time T ) and

Φ = 0 for x ∈ ∂D; Φ = φ at the final time T .

The formula for u can be written as

u(x, t) =
∫

Rn
φ(z)q(z, T ;x, t) dz

where
q(z, s;x, t) = probability that the state arrives at z at time s,
starting from x at time t, without hitting ∂D first.

The function q(z, s;x, t) solves the forward Kolmogorov equation for z ∈ D and s > t, with
boundary condition q = 0 for z ∈ ∂D, and initial condition q = δx. The justification is very
much like the argument given above for Rn.

One thing changes significantly when we work in a bounded domain:
∫
D q(z, s;x, t) dz < 1.

The reason is that q gives the probability of arriving at z at time s without hitting the
boundary first. Thus

1 −
∫

D
q(z, s;x, t) dz = prob of hitting ∂D by time s, starting from x at time t.

Evidently
∫

q(z, s;x, t) dz is decreasing in time. Let’s check this for Brownian motion, for
which qs − 1

2∆q = 0. We have

d

ds

∫
D

q(z, s;x, t) dz =
∫

D
qs dz

= 1
2

∫
D

∆q dz

= 1
2

∫
∂D

∂q

∂n
≤ 0.

The inequality in the last step is a consequence of the maximum principle (to be discussed
in Section 6): since q = 0 at ∂D and q ≥ 0 in D we have ∂q/∂n ≤ 0 at ∂D, where n is
the outward unit normal. (In fact ∂q/∂n < 0; this is a “strong version” of the maximum
principle.)
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