
PDE for Finance Notes, Spring 2000 – Section 4
Notes by Robert V. Kohn, Courant Institute of Mathematical Sciences. For use only in
connection with the NYU course PDE for Finance, G63.2706, Spring 2000.

Note on office hours: I’ll be at a conference Wed. 3/8 to Fri. 3/17, so I won’t be holding
any office hours during that time. I will be reading and responding to email and voicemail.

Homework schedule: HW2 was due 2/22, with a grace period till 2/29 when solutions
were distributed. HW3 is due 3/7, with a grace period till 3/21 when solutions will be
distributed. HW4 will be distributed 3/7. There will be no lecture 3/14 due to spring
break.

Suggestions for further reading related to Section 3.

(a) The second half of Section 3 introduced Merton’s analysis of optimal investment and
consumption. This is perhaps the most basic application of continuous-time stochas-
tic dynamic programming to finance. Of course Merton went much further than our
treatment; his work is reprinted (with some updating) in Robert C. Merton, Contin-
uous Time Finance, Blackwell, 1992, see especially chapters 4 and 5.

(b) It is natural to ask what becomes of Merton’s analysis in the presence of transaction
costs. This was studied by M.H.A. Davis and A.R. Norman, Portfolio selection with
transaction costs, Math. of Operations Research 15 (1990) 676-713. Our example
with the high-yield and money-market accounts, and proportional transaction costs,
was essentially a deterministic analogue of Davis and Norman’s analysis.

(c) An interesting extension of the Merton problem is discussed in T. S.Y. Ho, Intertem-
poral commodity futures hedging and the production decision, J. Finance 39 (1984)
351-376. Consider a wheat farmer whose unknowns are (i) the number of bushels of
wheat his fields will produce at harvest, and (ii) the price of a bushel of wheat at
harvest time. The farmer’s control variable is the number of wheat futures he should
hold. A natural goal is to optimize the utility of the farmer’s wealth at harvest-time.
The method of dynamic programming reduces this to solution of an HJB equation (in
two state variables and time), and gives an optimal feedback law (the optimal futures
position as a function of the expected harvest, the price of wheat, and the time to
harvest).

(d) The present section discusses optimal replication of a European option in an incom-
plete market, following a paper by D. Bertsimas, L. Logan, and A.W. Lo, Hedging
derivative securities and incomplete markets: an ε-arbitrage approach, Working Paper
LFE1027-99R, Sloan School of Management, MIT, 1999. These discrete-time prob-
lems naturally have continuous-time analogues, and the paper by Bertsimas, Logan
and Lo discusses the continuous-time as well as the discrete-time versions.

The papers by Davis & Norman, Ho, and Bertsimas, Logan, & Lo have all been added to
the CIMS library reserve green box. I’ve also asked that Merton’s book be added to the
reserve (this will take a little time).
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*********************

Discrete-time stochastic dynamic programming. Continuous-time stochastic dy-
namic programming requires some fairly heavy machinery, such as stochastic differential
equations and the Ito calculus. The discrete-time setting is more accessible – it requires
little more than the basic probability and the overall concept of dynamic programming. Of
course many problems have both discrete and continuous-time versions, and it is often en-
lightening to consider both (or compare the two). A general discussion of the discrete-time
setting, with many examples, can be found in Dimitri Bertsekas, Dynamic Programming:
Deterministic and Stochastic Models, Prentice-Hall, 1987 (on reserve), especially Chapter 2.
Our approach here is different: we shall explain the method by presenting a few financially-
relevant examples.

**********************

Optimal control of execution costs. This example is taken from the recent article:
Dimitris Bertsimas and Andrew Lo, Optimal control of execution costs, J. Financial Markets
1 (1998) 1-50. A copy is on reserve in the Green box.

The problem is this: an investor wants to buy a large amount of some specific stock. If
he buys it all at once he’ll drive the price up, thereby paying much more than necessary.
Better to buy part of the stock today, part tomorrow, part the day after tomorrow, etc.
until the full amount is in hand. But how best to break it up?

Here’s a primitive model. It’s easy to criticize (we’ll do this below), but it’s a good starting
point – and an especially transparent example of stochastic optimal control. Suppose the
investor wants to buy Stot shares of stock over a period of N days. His control variable is
Si, the number of shares bought on day i. Obviously we require S1 + . . . + SN = Stot.

We need a model for the impact of the investor’s purchases on the market. Here’s where
this model is truly primitive: we suppose that the price Pi the investor achieves on day i is
related to the price Pi−1 on day i − 1 by

Pi = Pi−1 + θSi + σei (1)

where ei is a Gaussian random variable with mean 0 and variance 1 (independent of Si and
Pi−1). Here θ and σ are fixed constants.

And we need a goal. Following Bertsimas and Lo we focus on minimizing the expected total
cost:

minE

[
N∑

i=1

PiSi

]
.

To set this up as a dynamic programming problem, we must identify the state. There is a
bit of art here: the principle of dynamic programming requires that we be prepared to start
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the optimization at any day i = N,N − 1,N − 2, . . . and when i = 1 we get the problem at
hand. Not so hard here: the state on day i is described by the most recent price Pi−1 and
the amount of stock yet to be purchased Wi = Stot − S1 − . . . − Si−1. The state equation
is easy: Pi evolves as specified above, and Wi evolves by

Wi+1 = Wi − Si.

Dynamic programming finds the optimal control by starting at day N , and working back-
ward one day at a time. The relation that permits us to work backward is the one-time-step
version of the principle of dynamic programming. In this case it says:

Vi(Pi−1,Wi) = min
s

E [Pis + Vi+1(Pi,Wi+1)] .

Here Vi(P,W ) is the value function:

Vi(P,W ) = optimal expected cost of purchasing W shares
starting on day i, if the most recent price was P .

(The subscript i plays the role of time.)

To find the solution, we begin by finding VN (P,W ). Since i = N the investor has no choice
but to buy the entire lot of W shares, and his price is PN = P + θW + eN , so his expected
cost is

VN (P,W ) = E [(P + θW + σeN )W ] = PW + θW 2.

Next let’s find VN−1(P,W ). The dynamic programming principle gives

VN−1(P,W ) = min
s

E [(P + θs + σeN−1)s + VN (P + θs + σeN−1,W − s)]

= min
s

E
[
(P + θs + σeN−1)s + (P + θs + σeN−1)(W − s) + θ(W − s)2

]
= min

s

[
(P + θs)s + (P + θs)(W − s) + θ(W − s)2

]
= min

s

[
W (P + θs) + θ(W − s)2

]
.

The optimal s is W/2, giving value

VN−1(P,W ) = PW +
3
4
θW 2.

Thus: starting at day N = 1 (so there are only 2 trading days) the investor should split his
purchase in two equal parts, buying half the first day and half the second day. His impact
on the market costs him, on average, an extra 3

4θW 2 over the no-market-impact value PW .

Proceeding similarly for day N − 2 etc., a pattern quickly becomes clear: starting at day
N − i with the goal of purchasing W shares, if the most recent price was P , the optimal
trade on day i (the optimal s) is W/(i + 1), and the expected cost of all W shares is

VN−i(P,W ) = WP +
i + 2

2(i + 1)
θW 2.
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This can be proved by induction. The inductive step is very similar to our calculation of
VN−1, and is left to the reader.

Notice the net effect of this calculation is extremely simple: no matter when he starts, the
investor should divide his total goal W into equal parts – as many as there are trading days
– and purchase one part each day. Taking i = N − 1 we get the answer to our original
question: if the most recent price is P and the goal is to buy Stot over N days, then this
optimal strategy leads to an expected total cost

V1(P, Stot) = PStot +
θ

2
(1 +

1
N

)S2
tot.

There’s something unusual about this conclusion. The investor’s optimal strategy is not
influenced by the random flucutations of the prices. It’s always the same, and can be fixed
in advance. That’s extremely unusual in stochastic control problems: the optimal control
can usually be chosen as a feedback control, i.e. a deterministic function of the state – but
since the state depends on the fluctuations, so does the control.

I warned you it was easy to criticize this model. Some comments:

1. The variance of the noise in the price model never entered our analysis. That’s because
our hypothetical investor is completely insensitive to risk – he cares only about the
expected result, not about its variance. No real investor is like this.

2. The price law (1) is certainly wrong: it has the ith trade Si increasing not just the ith
price Pi but also every subsequent price. A better law would surely make the impact
of trading temporary. Bertismas and Lo consider one such law, for which the problem
still has a closed-form solution derived by methods similar to those used above.

The take-home message: Discrete-time stochastic dynamic programming is easy and fun. Of
course a closed-form solution isn’t always available. When there is no closed-form solution
one must work backward in time numerically. The hardest part of the whole thing is keeping
your indices straight, and remembering which information is known at time i, and which is
random.

The example just presented has an interesting continuous-time analogue. You’ll be asked
to work this out on HW4.

****************************

When to sell an asset. This is an optimal stopping problem. It’s also interesting because
the state is described by a discrete variable as well as a continuous one. My discussion
follows Section 2.4 of Bertsekas.

The problem is this: you have an asset (e.g. a house) you wish to sell. One offer arrives
each week (yes, this example is oversimplified). The offers are independent draws from a
single, known distribution. You must sell the house by the end of N weeks. If you sell it
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earlier, you’ll invest the cash (risk-free), and its value will increase by factor (1 + r) each
week. Your goal is to maximize the expected cash on hand at the end of the Nth week.

The control, of course, is the decision (taken each week) to sell or not to sell. The state in a
given week consists of (a) the current offer, and (b) whether the house is already sold. We
use w to denote the current offer, and s, n to denote sold vs. not-sold. The state evolution
is summarized by Figure 1.

N − 210 2 N − 1 N

sell

wait

sell sell sell sell sell

wait wait wait wait

SOLD

w0 w1 wN−1

· · ·

· · ·w3 NOT SOLD

Figure 1: Evolution of states for the example involving selling an asset.

The obvious value function is

Ji(w, ·) = expected week-N cash produced by current and future sales,
if the current week is i and the current offer is w.

The · in Ji(w, ·) stands for n or s. Obviously Ji(w, s) = 0 for all i and all w.

We start as usual with the final time, which as we’ve indexed things is N − 1. If the house
isn’t already sold you have no choice but to sell it, realizing

JN−1(w,n) = w.

The key to working backward is the principle of dynamic programming, which in this setting
says:

Ji(w,n) = max
{
(1 + r)N−1−iw,E[Ji+1(w′, n)]

}
.

Here w′ is an independent trial from the specified distribution (the next week’s offer); the
first choice corresponds to the decision “sell now”, the second choice to the decision “don’t
sell now”.

It’s convenient to work not with Ji but rather

Vi(w) = (1 + r)i−N+1Ji(w),

which is the present value (at week i) of the income from future sales. Evidently we have
VN−1(w) = w and

Vi(w,n) = max
{
w, (1 + r)−1E[Vi+1(w′, n)]

}
.
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The optimal decision in week i is:

accept offer w if w ≥ αi

reject offer w if w ≤ αi

with
αi = (1 + r)−1E[Vi+1(w′, n)].

To complete the solution to the problem we must find the sequence of real numbers α0, . . . αN−2.
Since

Vi+1(w,n) =

{
w if w > αi+1

αi+1 if w ≤ αi+1

we have

αi =
1

1 + r

∫ αi+1

0
αi+1 dP (w) +

1
1 + r

∫ ∞

αi+1

w dP (w)

=
1

1 + r
αi+1P (αi+1) +

1
1 + r

∫ ∞

αi+1

w dP (w)

where P (λ) = prob{w < λ} is the distribution function of w. This relation, with the
initialization αN−1 = 0, permits one to calculate the α’s one by one (numerically). It can
be shown that they are monotone in i: α0 > α1 > . . . (see Bertsekas). This is natural, since
early in the sales process it makes no sense to take a low offer, but later on it may be a
good idea to avoid being forced to take a still lower one on week N . One can also show
that after many steps of the recursion relation for αi, the value of αi approaches the fixed
point α∗ which solves

α∗ =
1

1 + r
α∗P (α∗) +

1
1 + r

∫ ∞

α∗
w dP (w).

Thus when the horizon is very far away, the optimal policy is to reject offers below α∗ and
accept offers above α∗.

*********************

Least-square replication of a European option. This discussion follows a lovely paper
by D. Bertsimas, L. Logan, and A.W. Lo: Hedging derivative securities and incomplete
markets: an ε-arbitrage approach, Working Paper LFE1027-99R, Sloan School of Manage-
ment, MIT, 1999 (on reserve in the green box). We focus for specificity on the simplest
case, when the returns at different times are independent trials from a single probability
distribution. However you’ll see as we go along that this hypothesis isn’t really being used;
the method is actually much more general. (We’ll comment on its scope at the end.)

Here’s the problem. Consider a stock that can be traded only at discrete times j∆t, and
suppose its price Pj at the jth time satisfies

Pj = Pj−1(1 + φj−1) (2)
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where φj−1 is chosen from a specified distribution, independent of j. (The discrete-time
analogue of standard lognormal dynamics is obtained by taking log(1+φj) = µ∆t+σ

√
∆te

where e is Gaussian with mean 0 and variance 1.) You are an investment banker, and at
time j = 0 you sell an option with maturity N and payout F (PN ), receiving cash V0 in
payment. Your goal is to invest this cash wisely, trading in a self-financing way, so the value
at the final time comes as close as possible to replicating the payout F (PN ).

The state at time j is

Vj = the value of your portfolio at time j, and
Pj = the price at which trades can be made at time j.

We suppose that on each day, knowing Vj and Pj (but not the next day’s price Pj+1)
you make a decision how to rebalance your portfolio, buying or selling at price Pj till you
hold θj units of stock and Bj units of cash. Thus θj is the control. Each trade must be
“self-financing.” To understand what this means, observe that going into the jth day your
portfolio is worth

θj−1Pj + Bj−1

while after rebalancing it is worth
θjPj + Bj .

For the trade to be self-financing these two expressions must be equal; this gives the re-
striction

Pj(θj − θj−1) + (Bj − Bj−1) = 0.

Since the value of your portfolio on the jth day is

Vj = θjPj + Bj,

the value changes from day to day by the law

Vj − Vj−1 = θj−1(Pj − Pj−1).

We interpret the goal of replicating the payout “as well as possible” in a least-square sense:
your aim is to choose the θj’s so as to

minimize E
[
(VN − F (PN ))2

]
.

This time it is fairly obvious how to fit the problem into the dynamic programming frame-
work. At time i the value function is

Ji(V, P ) = min
θi,...,θN−1

EVi=V, Pi=P

[
|VN − F (PN )|2

]
.

The final-time condition is
JN (V, P ) = |V − F (P )|2
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since on day N there is no decision to be made. The principle of dynamic programming
gives

Ji(V, P ) = min
θi

EPi=P [Ji+1(V + θi(Pi+1 − Pi), Pi+1)] .

Now a small miracle happens (this is the advantage of the least-square formulation): the
value function is, at each time, a quadratic polynomial in V , with coefficients which are
computable functions of P . In fact:

Claim: The value functions have the form

Ji(Vi, Pi) = ai(Pi)|Vi − bi(Pi)|2 + ci(Pi)

and the optimal control θi is given by a feedback law that’s linear in Vi:

θi(Vi, Pi) = pi(Pi) − Viqi(Pi).

The functions pi, qi, ai, bi, and ci are determined inductively by the following explicit for-
mulas:

pi(Pi) =
E [ai+1(Pi+1) · bi+1(Pi+1) · (Pi+1 − Pi)]

E [ai+1(Pi+1) · (Pi+1 − Pi)2]

qi(Pi) =
E [ai+1(Pi+1) · (Pi+1 − Pi)]
E [ai+1(Pi+1) · (Pi+1 − Pi)2]

ai(Pi) = E
[
ai+1(Pi+1) · [1 − qi(Pi)(Pi+1 − Pi)]2

]
bi(Pi) =

1
ai(Pi)

E [ai+1(Pi+1) · [bi+1(Pi+1) − pi(Pi)(Pi+1 − Pi)] · [1 − qi(Pi)(Pi+1 − Pi)]]

ci(Pi) = E [ci+1(Pi+1)] − ai(Pi) · bi(Pi)2 + E
[
ai+1(Pi+1) · [bi+1(Pi+1) − pi(Pi)(Pi+1 − Pi)]2

]
where all expectations are over the uncertainties associated with passage from time i to
i + 1. These relations can be solved backward in time, starting from time N , using the
initialization

aN (PN ) = 1, bN (PN ) = F (PN ), cN (PN ) = 0.

Play before work. Let’s explore the impact of the claim.

Main consequence: The price you charged for the option – V0 – never enters the analysis.
But of course it’s not irrelevant! If you charged V0 for the option and the day-0 price was
P0, then your expected replication error is J0(V0, P0) = a0(P0)|V0 − b0(P0)|2 + c0(P0). The
first term is always positive, so the price that minimizes the replication error is V0 = b0(P0).

Is V0 = b0(P0) necessarily the market price of the option? Not so fast! This would be so – by
the usual absence-of-arbitrage argument – if c0(P0) were zero, since in that case the payout
is exactly replicatable. However in general c0(P0) is positive. (It is clearly nonnegative,
since the mean-square replication error is nonnegative no matter what the value of V0. It
is generally positive, due to market incompleteness: even the Black-Scholes marketplace is
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not complete in the discrete-time setting.) If c0 is small then the price of the option should
surely be close to b0. However there is no logical reason why it should be exactly b0. For
example, the sign of the replication error VN −F (PN ) makes a great deal of difference to the
seller (and to buyer) of the option, but it did not enter our discussion. Moreover there is no
reason a specific investor should accept the quadratic replication error as the appropriate
measure of risk.

What about the Black-Scholes marketplace, where the classical Black-Scholes-Merton anal-
ysis tells us how to price and hedge an option? That analysis is correct, of course, but
it requires trading continuously in time. If you can trade only at discrete times j∆t then
the market is no longer complete and options are not exactly replicatable. If you use the
optimal trading strategy determined in our Claim, your mean-square replication error will
be smaller than the value obtained by using the continuous-time Black-Scholes hedging
strategy (which sets θj = ∂V/∂P evaluated at P = Pj and t = j∆t, where V solves the
Black-Scholes PDE). How much smaller? This isn’t quite clear, at least not to me. The
paper by Bertsimas-Logan-Lo does show, however, that the discrete-time results converge
to those of the continuous-time analysis as ∆t → 0.

OK, now work. We must justify the claim. Rather than do a formal induction, let us simply
explain the first step: why the formulas are correct when i = N − 1. This has all the ideas
of the general case, and the notation is slightly simpler since in this case ai+1 = aN = 1.
The principle of dynamic programming gives

JN−1(VN−1, PN−1) = min
θN−1

E
[
|VN−1 + θN−1(PN − PN−1) − F (PN )|2

]
.

Simplifying the notation, let us write the right hand side as

min
θ

E
[
|V + θδP − F |2

]
, (3)

bearing in mind that δP = PN − PN−1 and F = F (PN ) are random variables, and V and
θ are deterministic constants.

Identification of the optimal θ is essentially a task of linear algebra, since

〈ξ, η〉 = E [ξη]

is an inner product on the vector space of random variables. We need to view the constant
function V as a random variable; let us do this by writing it as V 1 where V is scalar and
1 is the random variable which always takes the value 1. Then (3) can be written as

‖V 1 + θδP − F‖2

where ‖ξ‖2 = 〈ξ, ξ〉 = E[ξ2]. Decomposing 1 and F into the parts parallel and orthogonal
to δP , we have

1 = (1 − qδP ) + qδP with q = 〈1, δP 〉‖δP‖−2

and
F = (F − pδP ) + pδP with p = 〈F, δP 〉‖δP‖−2 ,

9



and

‖V 1 + θδP − F‖2 = ‖V (1 − qδP ) − (F − pδP ) + (θ + V q − p)δP‖2

= ‖V (1 − qδP ) − (F − pδP )‖2 + (θ + V q − p)2‖δP‖2.

The optimal θ makes the second term vanish: θ = p − V q, and the resulting value is

V 2‖1 − qδP‖2 − 2V 〈1 − qδP, F − pδP 〉 + ‖F − pδP‖2

This is, as expected, a quadratic polynomial in V , which can be written in the form a(V −
b)2 + c. Expressing p, q, a, b and c in the original probabilistic notation gives precisely the
formulas of the Claim with i = N − 1. The general inductive step is entirely similar.

Let’s close by discussing the scope of this method. The case considered above – returns that
are independent and identically distributed at each time step – is already of real interest. It
includes the time discretization of the standard Black-Scholes marketplace, but it is much
more general. For example, it can also be used to model a stock whose price process has
jumps (see Section 3.3 of Bertsimas-Logan-Lo).

Moreover the framework is by no means restricted to the case of such simple price dynamics.
All one really needs is that (i) the price is determined by a Markov process, and (ii) the
payout at maturity depends on the final state of this process. Thus the same framework
can be used for problems as diverse as:

• An exotic option whose payout is the maximum stock price between times 0 and N .
Just replace the stock price process Pj with the process (Pj ,Mj) = (price at time j,
max price through time j), defined by

Pj = Pj−1(1 + φj−1), Mj = max{Pj ,Mj−1}

and replace the payout F (PN ) by one of the form F (MN ).

• Stochastic volatility. Just replace the stock price process Pj with a process (Pj , σj)
= (price at time j, volatility at time j), with the time-discretization of your favorite
stochastic-volatility model as the dynamics. The payout would, in this case, still have
the form F (PN ).
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