PDE for Finance Notes, Spring 2000 - Section 4

Notes by Robert V. Kohn, Courant Institute of Mathematical Sciences. For use only in connection with the NYU course PDE for Finance, G63.2706, Spring 2000.

Note on office hours: I'll be at a conference Wed. $3 / 8$ to Fri. 3/17, so I won't be holding any office hours during that time. I will be reading and responding to email and voicemail.

Homework schedule: HW2 was due $2 / 22$, with a grace period till $2 / 29$ when solutions were distributed. HW3 is due $3 / 7$, with a grace period till $3 / 21$ when solutions will be distributed. HW4 will be distributed $3 / 7$. There will be no lecture $3 / 14$ due to spring break.

Suggestions for further reading related to Section 3.

(a) The second half of Section 3 introduced Merton's analysis of optimal investment and consumption. This is perhaps the most basic application of continuous-time stochastic dynamic programming to finance. Of course Merton went much further than our treatment; his work is reprinted (with some updating) in Robert C. Merton, Continuous Time Finance, Blackwell, 1992, see especially chapters 4 and 5.
(b) It is natural to ask what becomes of Merton's analysis in the presence of transaction costs. This was studied by M.H.A. Davis and A.R. Norman, Portfolio selection with transaction costs, Math. of Operations Research 15 (1990) 676-713. Our example with the high-yield and money-market accounts, and proportional transaction costs, was essentially a deterministic analogue of Davis and Norman's analysis.
(c) An interesting extension of the Merton problem is discussed in T. S.Y. Ho, Intertemporal commodity futures hedging and the production decision, J. Finance 39 (1984) 351-376. Consider a wheat farmer whose unknowns are (i) the number of bushels of wheat his fields will produce at harvest, and (ii) the price of a bushel of wheat at harvest time. The farmer's control variable is the number of wheat futures he should hold. A natural goal is to optimize the utility of the farmer's wealth at harvest-time. The method of dynamic programming reduces this to solution of an HJB equation (in two state variables and time), and gives an optimal feedback law (the optimal futures position as a function of the expected harvest, the price of wheat, and the time to harvest).
(d) The present section discusses optimal replication of a European option in an incomplete market, following a paper by D. Bertsimas, L. Logan, and A.W. Lo, Hedging derivative securities and incomplete markets: an ϵ-arbitrage approach, Working Paper LFE1027-99R, Sloan School of Management, MIT, 1999. These discrete-time problems naturally have continuous-time analogues, and the paper by Bertsimas, Logan and Lo discusses the continuous-time as well as the discrete-time versions.

The papers by Davis \& Norman, Ho, and Bertsimas, Logan, \& Lo have all been added to the CIMS library reserve green box. I've also asked that Merton's book be added to the reserve (this will take a little time).

Discrete-time stochastic dynamic programming. Continuous-time stochastic dynamic programming requires some fairly heavy machinery, such as stochastic differential equations and the Ito calculus. The discrete-time setting is more accessible - it requires little more than the basic probability and the overall concept of dynamic programming. Of course many problems have both discrete and continuous-time versions, and it is often enlightening to consider both (or compare the two). A general discussion of the discrete-time setting, with many examples, can be found in Dimitri Bertsekas, Dynamic Programming: Deterministic and Stochastic Models, Prentice-Hall, 1987 (on reserve), especially Chapter 2. Our approach here is different: we shall explain the method by presenting a few financiallyrelevant examples.

Optimal control of execution costs. This example is taken from the recent article: Dimitris Bertsimas and Andrew Lo, Optimal control of execution costs, J. Financial Markets 1 (1998) 1-50. A copy is on reserve in the Green box.

The problem is this: an investor wants to buy a large amount of some specific stock. If he buys it all at once he'll drive the price up, thereby paying much more than necessary. Better to buy part of the stock today, part tomorrow, part the day after tomorrow, etc. until the full amount is in hand. But how best to break it up?

Here's a primitive model. It's easy to criticize (we'll do this below), but it's a good starting point - and an especially transparent example of stochastic optimal control. Suppose the investor wants to buy $S_{\text {tot }}$ shares of stock over a period of N days. His control variable is S_{i}, the number of shares bought on day i. Obviously we require $S_{1}+\ldots+S_{N}=S_{\text {tot }}$.

We need a model for the impact of the investor's purchases on the market. Here's where this model is truly primitive: we suppose that the price P_{i} the investor achieves on day i is related to the price P_{i-1} on day $i-1$ by

$$
\begin{equation*}
P_{i}=P_{i-1}+\theta S_{i}+\sigma e_{i} \tag{1}
\end{equation*}
$$

where e_{i} is a Gaussian random variable with mean 0 and variance 1 (independent of S_{i} and P_{i-1}). Here θ and σ are fixed constants.
And we need a goal. Following Bertsimas and Lo we focus on minimizing the expected total cost:

$$
\min E\left[\sum_{i=1}^{N} P_{i} S_{i}\right] .
$$

To set this up as a dynamic programming problem, we must identify the state. There is a bit of art here: the principle of dynamic programming requires that we be prepared to start
the optimization at any day $i=N, N-1, N-2, \ldots$ and when $i=1$ we get the problem at hand. Not so hard here: the state on day i is described by the most recent price P_{i-1} and the amount of stock yet to be purchased $W_{i}=S_{\text {tot }}-S_{1}-\ldots-S_{i-1}$. The state equation is easy: P_{i} evolves as specified above, and W_{i} evolves by

$$
W_{i+1}=W_{i}-S_{i}
$$

Dynamic programming finds the optimal control by starting at day N, and working backward one day at a time. The relation that permits us to work backward is the one-time-step version of the principle of dynamic programming. In this case it says:

$$
V_{i}\left(P_{i-1}, W_{i}\right)=\min _{s} E\left[P_{i} s+V_{i+1}\left(P_{i}, W_{i+1}\right)\right]
$$

Here $V_{i}(P, W)$ is the value function:

$$
\begin{aligned}
V_{i}(P, W)= & \text { optimal expected cost of purchasing } W \text { shares } \\
& \text { starting on day } i, \text { if the most recent price was } P .
\end{aligned}
$$

(The subscript i plays the role of time.)
To find the solution, we begin by finding $V_{N}(P, W)$. Since $i=N$ the investor has no choice but to buy the entire lot of W shares, and his price is $P_{N}=P+\theta W+e_{N}$, so his expected cost is

$$
V_{N}(P, W)=E\left[\left(P+\theta W+\sigma e_{N}\right) W\right]=P W+\theta W^{2}
$$

Next let's find $V_{N-1}(P, W)$. The dynamic programming principle gives

$$
\begin{aligned}
V_{N-1}(P, W) & =\min _{s} E\left[\left(P+\theta s+\sigma e_{N-1}\right) s+V_{N}\left(P+\theta s+\sigma e_{N-1}, W-s\right)\right] \\
& =\min _{s} E\left[\left(P+\theta s+\sigma e_{N-1}\right) s+\left(P+\theta s+\sigma e_{N-1}\right)(W-s)+\theta(W-s)^{2}\right] \\
& =\min _{s}\left[(P+\theta s) s+(P+\theta s)(W-s)+\theta(W-s)^{2}\right] \\
& =\min _{s}\left[W(P+\theta s)+\theta(W-s)^{2}\right]
\end{aligned}
$$

The optimal s is $W / 2$, giving value

$$
V_{N-1}(P, W)=P W+\frac{3}{4} \theta W^{2}
$$

Thus: starting at day $N=1$ (so there are only 2 trading days) the investor should split his purchase in two equal parts, buying half the first day and half the second day. His impact on the market costs him, on average, an extra $\frac{3}{4} \theta W^{2}$ over the no-market-impact value $P W$.

Proceeding similarly for day $N-2$ etc., a pattern quickly becomes clear: starting at day $N-i$ with the goal of purchasing W shares, if the most recent price was P, the optimal trade on day i (the optimal s) is $W /(i+1)$, and the expected cost of all W shares is

$$
V_{N-i}(P, W)=W P+\frac{i+2}{2(i+1)} \theta W^{2}
$$

This can be proved by induction. The inductive step is very similar to our calculation of V_{N-1}, and is left to the reader.
Notice the net effect of this calculation is extremely simple: no matter when he starts, the investor should divide his total goal W into equal parts - as many as there are trading days - and purchase one part each day. Taking $i=N-1$ we get the answer to our original question: if the most recent price is P and the goal is to buy $S_{\text {tot }}$ over N days, then this optimal strategy leads to an expected total cost

$$
V_{1}\left(P, S_{\mathrm{tot}}\right)=P S_{\mathrm{tot}}+\frac{\theta}{2}\left(1+\frac{1}{N}\right) S_{\mathrm{tot}}^{2} .
$$

There's something unusual about this conclusion. The investor's optimal strategy is not influenced by the random flucutations of the prices. It's always the same, and can be fixed in advance. That's extremely unusual in stochastic control problems: the optimal control can usually be chosen as a feedback control, i.e. a deterministic function of the state - but since the state depends on the fluctuations, so does the control.

I warned you it was easy to criticize this model. Some comments:

1. The variance of the noise in the price model never entered our analysis. That's because our hypothetical investor is completely insensitive to risk - he cares only about the expected result, not about its variance. No real investor is like this.
2. The price law (1) is certainly wrong: it has the i th trade S_{i} increasing not just the i th price P_{i} but also every subsequent price. A better law would surely make the impact of trading temporary. Bertismas and Lo consider one such law, for which the problem still has a closed-form solution derived by methods similar to those used above.

The take-home message: Discrete-time stochastic dynamic programming is easy and fun. Of course a closed-form solution isn't always available. When there is no closed-form solution one must work backward in time numerically. The hardest part of the whole thing is keeping your indices straight, and remembering which information is known at time i, and which is random.

The example just presented has an interesting continuous-time analogue. You'll be asked to work this out on HW4.

When to sell an asset. This is an optimal stopping problem. It's also interesting because the state is described by a discrete variable as well as a continuous one. My discussion follows Section 2.4 of Bertsekas.

The problem is this: you have an asset (e.g. a house) you wish to sell. One offer arrives each week (yes, this example is oversimplified). The offers are independent draws from a single, known distribution. You must sell the house by the end of N weeks. If you sell it
earlier, you'll invest the cash (risk-free), and its value will increase by factor $(1+r)$ each week. Your goal is to maximize the expected cash on hand at the end of the N th week.

The control, of course, is the decision (taken each week) to sell or not to sell. The state in a given week consists of (a) the current offer, and (b) whether the house is already sold. We use w to denote the current offer, and s, n to denote sold vs. not-sold. The state evolution is summarized by Figure 1.

Figure 1: Evolution of states for the example involving selling an asset.

The obvious value function is

$$
\begin{aligned}
J_{i}(w, \cdot)= & \text { expected week- } N \text { cash produced by current and future sales, } \\
& \text { if the current week is } i \text { and the current offer is } w .
\end{aligned}
$$

The \cdot in $J_{i}(w, \cdot)$ stands for n or s. Obviously $J_{i}(w, s)=0$ for all i and all w.
We start as usual with the final time, which as we've indexed things is $N-1$. If the house isn't already sold you have no choice but to sell it, realizing

$$
J_{N-1}(w, n)=w
$$

The key to working backward is the principle of dynamic programming, which in this setting says:

$$
J_{i}(w, n)=\max \left\{(1+r)^{N-1-i} w, E\left[J_{i+1}\left(w^{\prime}, n\right)\right]\right\} .
$$

Here w^{\prime} is an independent trial from the specified distribution (the next week's offer); the first choice corresponds to the decision "sell now", the second choice to the decision "don't sell now".

It's convenient to work not with J_{i} but rather

$$
V_{i}(w)=(1+r)^{i-N+1} J_{i}(w),
$$

which is the present value (at week i) of the income from future sales. Evidently we have $V_{N-1}(w)=w$ and

$$
V_{i}(w, n)=\max \left\{w,(1+r)^{-1} E\left[V_{i+1}\left(w^{\prime}, n\right)\right]\right\} .
$$

The optimal decision in week i is:

$$
\begin{array}{rll}
\text { accept offer } w & \text { if } & w \geq \alpha_{i} \\
\text { reject offer } w & \text { if } & w \leq \alpha_{i}
\end{array}
$$

with

$$
\alpha_{i}=(1+r)^{-1} E\left[V_{i+1}\left(w^{\prime}, n\right)\right] .
$$

To complete the solution to the problem we must find the sequence of real numbers $\alpha_{0}, \ldots \alpha_{N-2}$. Since

$$
V_{i+1}(w, n)= \begin{cases}w & \text { if } w>\alpha_{i+1} \\ \alpha_{i+1} & \text { if } w \leq \alpha_{i+1}\end{cases}
$$

we have

$$
\begin{aligned}
\alpha_{i} & =\frac{1}{1+r} \int_{0}^{\alpha_{i+1}} \alpha_{i+1} d P(w)+\frac{1}{1+r} \int_{\alpha_{i+1}}^{\infty} w d P(w) \\
& =\frac{1}{1+r} \alpha_{i+1} P\left(\alpha_{i+1}\right)+\frac{1}{1+r} \int_{\alpha_{i+1}}^{\infty} w d P(w)
\end{aligned}
$$

where $P(\lambda)=\operatorname{prob}\{w<\lambda\}$ is the distribution function of w. This relation, with the initialization $\alpha_{N-1}=0$, permits one to calculate the α 's one by one (numerically). It can be shown that they are monotone in $i: \alpha_{0}>\alpha_{1}>\ldots$ (see Bertsekas). This is natural, since early in the sales process it makes no sense to take a low offer, but later on it may be a good idea to avoid being forced to take a still lower one on week N. One can also show that after many steps of the recursion relation for α_{i}, the value of α_{i} approaches the fixed point α_{*} which solves

$$
\alpha_{*}=\frac{1}{1+r} \alpha_{*} P\left(\alpha_{*}\right)+\frac{1}{1+r} \int_{\alpha_{*}}^{\infty} w d P(w) .
$$

Thus when the horizon is very far away, the optimal policy is to reject offers below α_{*} and accept offers above α_{*}.

Least-square replication of a European option. This discussion follows a lovely paper by D. Bertsimas, L. Logan, and A.W. Lo: Hedging derivative securities and incomplete markets: an ϵ-arbitrage approach, Working Paper LFE1027-99R, Sloan School of Management, MIT, 1999 (on reserve in the green box). We focus for specificity on the simplest case, when the returns at different times are independent trials from a single probability distribution. However you'll see as we go along that this hypothesis isn't really being used; the method is actually much more general. (We'll comment on its scope at the end.)
Here's the problem. Consider a stock that can be traded only at discrete times $j \Delta t$, and suppose its price P_{j} at the j th time satisfies

$$
\begin{equation*}
P_{j}=P_{j-1}\left(1+\phi_{j-1}\right) \tag{2}
\end{equation*}
$$

where ϕ_{j-1} is chosen from a specified distribution, independent of j. (The discrete-time analogue of standard lognormal dynamics is obtained by taking $\log \left(1+\phi_{j}\right)=\mu \Delta t+\sigma \sqrt{\Delta t} e$ where e is Gaussian with mean 0 and variance 1.) You are an investment banker, and at time $j=0$ you sell an option with maturity N and payout $F\left(P_{N}\right)$, receiving cash V_{0} in payment. Your goal is to invest this cash wisely, trading in a self-financing way, so the value at the final time comes as close as possible to replicating the payout $F\left(P_{N}\right)$.

The state at time j is

$$
\begin{aligned}
V_{j} & =\text { the value of your portfolio at time } j, \text { and } \\
P_{j} & =\text { the price at which trades can be made at time } j .
\end{aligned}
$$

We suppose that on each day, knowing V_{j} and P_{j} (but not the next day's price P_{j+1}) you make a decision how to rebalance your portfolio, buying or selling at price P_{j} till you hold θ_{j} units of stock and B_{j} units of cash. Thus θ_{j} is the control. Each trade must be "self-financing." To understand what this means, observe that going into the j th day your portfolio is worth

$$
\theta_{j-1} P_{j}+B_{j-1}
$$

while after rebalancing it is worth

$$
\theta_{j} P_{j}+B_{j} .
$$

For the trade to be self-financing these two expressions must be equal; this gives the restriction

$$
P_{j}\left(\theta_{j}-\theta_{j-1}\right)+\left(B_{j}-B_{j-1}\right)=0
$$

Since the value of your portfolio on the j th day is

$$
V_{j}=\theta_{j} P_{j}+B_{j},
$$

the value changes from day to day by the law

$$
V_{j}-V_{j-1}=\theta_{j-1}\left(P_{j}-P_{j-1}\right) .
$$

We interpret the goal of replicating the payout "as well as possible" in a least-square sense: your aim is to choose the θ_{j} 's so as to

$$
\operatorname{minimize} E\left[\left(V_{N}-F\left(P_{N}\right)\right)^{2}\right] .
$$

This time it is fairly obvious how to fit the problem into the dynamic programming framework. At time i the value function is

$$
J_{i}(V, P)=\min _{\theta_{i}, \ldots, \theta_{N-1}} E_{V_{i}=V, P_{i}=P}\left[\left|V_{N}-F\left(P_{N}\right)\right|^{2}\right] .
$$

The final-time condition is

$$
J_{N}(V, P)=|V-F(P)|^{2}
$$

since on day N there is no decision to be made. The principle of dynamic programming gives

$$
J_{i}(V, P)=\min _{\theta_{i}} E_{P_{i}=P}\left[J_{i+1}\left(V+\theta_{i}\left(P_{i+1}-P_{i}\right), P_{i+1}\right)\right] .
$$

Now a small miracle happens (this is the advantage of the least-square formulation): the value function is, at each time, a quadratic polynomial in V, with coefficients which are computable functions of P. In fact:

Claim: The value functions have the form

$$
J_{i}\left(V_{i}, P_{i}\right)=a_{i}\left(P_{i}\right)\left|V_{i}-b_{i}\left(P_{i}\right)\right|^{2}+c_{i}\left(P_{i}\right)
$$

and the optimal control θ_{i} is given by a feedback law that's linear in V_{i} :

$$
\theta_{i}\left(V_{i}, P_{i}\right)=p_{i}\left(P_{i}\right)-V_{i} q_{i}\left(P_{i}\right)
$$

The functions $p_{i}, q_{i}, a_{i}, b_{i}$, and c_{i} are determined inductively by the following explicit formulas:

$$
\begin{aligned}
p_{i}\left(P_{i}\right) & =\frac{E\left[a_{i+1}\left(P_{i+1}\right) \cdot b_{i+1}\left(P_{i+1}\right) \cdot\left(P_{i+1}-P_{i}\right)\right]}{E\left[a_{i+1}\left(P_{i+1}\right) \cdot\left(P_{i+1}-P_{i}\right)^{2}\right]} \\
q_{i}\left(P_{i}\right) & =\frac{E\left[a_{i+1}\left(P_{i+1}\right) \cdot\left(P_{i+1}-P_{i}\right)\right]}{E\left[a_{i+1}\left(P_{i+1}\right) \cdot\left(P_{i+1}-P_{i}\right)^{2}\right]} \\
a_{i}\left(P_{i}\right) & =E\left[a_{i+1}\left(P_{i+1}\right) \cdot\left[1-q_{i}\left(P_{i}\right)\left(P_{i+1}-P_{i}\right)\right]^{2}\right] \\
b_{i}\left(P_{i}\right) & =\frac{1}{a_{i}\left(P_{i}\right)} E\left[a_{i+1}\left(P_{i+1}\right) \cdot\left[b_{i+1}\left(P_{i+1}\right)-p_{i}\left(P_{i}\right)\left(P_{i+1}-P_{i}\right)\right] \cdot\left[1-q_{i}\left(P_{i}\right)\left(P_{i+1}-P_{i}\right)\right]\right] \\
c_{i}\left(P_{i}\right) & =E\left[c_{i+1}\left(P_{i+1}\right)\right]-a_{i}\left(P_{i}\right) \cdot b_{i}\left(P_{i}\right)^{2}+E\left[a_{i+1}\left(P_{i+1}\right) \cdot\left[b_{i+1}\left(P_{i+1}\right)-p_{i}\left(P_{i}\right)\left(P_{i+1}-P_{i}\right)\right]^{2}\right]
\end{aligned}
$$

where all expectations are over the uncertainties associated with passage from time i to $i+1$. These relations can be solved backward in time, starting from time N, using the initialization

$$
a_{N}\left(P_{N}\right)=1, \quad b_{N}\left(P_{N}\right)=F\left(P_{N}\right), \quad c_{N}\left(P_{N}\right)=0
$$

Play before work. Let's explore the impact of the claim.
Main consequence: The price you charged for the option - V_{0} - never enters the analysis. But of course it's not irrelevant! If you charged V_{0} for the option and the day- 0 price was P_{0}, then your expected replication error is $J_{0}\left(V_{0}, P_{0}\right)=a_{0}\left(P_{0}\right)\left|V_{0}-b_{0}\left(P_{0}\right)\right|^{2}+c_{0}\left(P_{0}\right)$. The first term is always positive, so the price that minimizes the replication error is $V_{0}=b_{0}\left(P_{0}\right)$.

Is $V_{0}=b_{0}\left(P_{0}\right)$ necessarily the market price of the option? Not so fast! This would be so - by the usual absence-of-arbitrage argument - if $c_{0}\left(P_{0}\right)$ were zero, since in that case the payout is exactly replicatable. However in general $c_{0}\left(P_{0}\right)$ is positive. (It is clearly nonnegative, since the mean-square replication error is nonnegative no matter what the value of V_{0}. It is generally positive, due to market incompleteness: even the Black-Scholes marketplace is
not complete in the discrete-time setting.) If c_{0} is small then the price of the option should surely be close to b_{0}. However there is no logical reason why it should be exactly b_{0}. For example, the sign of the replication error $V_{N}-F\left(P_{N}\right)$ makes a great deal of difference to the seller (and to buyer) of the option, but it did not enter our discussion. Moreover there is no reason a specific investor should accept the quadratic replication error as the appropriate measure of risk.

What about the Black-Scholes marketplace, where the classical Black-Scholes-Merton analysis tells us how to price and hedge an option? That analysis is correct, of course, but it requires trading continuously in time. If you can trade only at discrete times $j \Delta t$ then the market is no longer complete and options are not exactly replicatable. If you use the optimal trading strategy determined in our Claim, your mean-square replication error will be smaller than the value obtained by using the continuous-time Black-Scholes hedging strategy (which sets $\theta_{j}=\partial V / \partial P$ evaluated at $P=P_{j}$ and $t=j \Delta t$, where V solves the Black-Scholes PDE). How much smaller? This isn't quite clear, at least not to me. The paper by Bertsimas-Logan-Lo does show, however, that the discrete-time results converge to those of the continuous-time analysis as $\Delta t \rightarrow 0$.

OK, now work. We must justify the claim. Rather than do a formal induction, let us simply explain the first step: why the formulas are correct when $i=N-1$. This has all the ideas of the general case, and the notation is slightly simpler since in this case $a_{i+1}=a_{N}=1$. The principle of dynamic programming gives

$$
J_{N-1}\left(V_{N-1}, P_{N-1}\right)=\min _{\theta_{N-1}} E\left[\left|V_{N-1}+\theta_{N-1}\left(P_{N}-P_{N-1}\right)-F\left(P_{N}\right)\right|^{2}\right] .
$$

Simplifying the notation, let us write the right hand side as

$$
\begin{equation*}
\min _{\theta} E\left[|V+\theta \delta P-F|^{2}\right] \tag{3}
\end{equation*}
$$

bearing in mind that $\delta P=P_{N}-P_{N-1}$ and $F=F\left(P_{N}\right)$ are random variables, and V and θ are deterministic constants.

Identification of the optimal θ is essentially a task of linear algebra, since

$$
\langle\xi, \eta\rangle=E[\xi \eta]
$$

is an inner product on the vector space of random variables. We need to view the constant function V as a random variable; let us do this by writing it as $V \mathbf{1}$ where V is scalar and $\mathbf{1}$ is the random variable which always takes the value 1 . Then (3) can be written as

$$
\|V \mathbf{1}+\theta \delta P-F\|^{2}
$$

where $\|\xi\|^{2}=\langle\xi, \xi\rangle=E\left[\xi^{2}\right]$. Decomposing 1 and F into the parts parallel and orthogonal to δP, we have

$$
\mathbf{1}=(\mathbf{1}-q \delta P)+q \delta P \quad \text { with } q=\langle\mathbf{1}, \delta P\rangle\|\delta P\|^{-2}
$$

and

$$
F=(F-p \delta P)+p \delta P \quad \text { with } p=\langle F, \delta P\rangle\|\delta P\|^{-2},
$$

and

$$
\begin{aligned}
\|V \mathbf{1}+\theta \delta P-F\|^{2} & =\|V(\mathbf{1}-q \delta P)-(F-p \delta P)+(\theta+V q-p) \delta P\|^{2} \\
& =\|V(\mathbf{1}-q \delta P)-(F-p \delta P)\|^{2}+(\theta+V q-p)^{2}\|\delta P\|^{2} .
\end{aligned}
$$

The optimal θ makes the second term vanish: $\theta=p-V q$, and the resulting value is

$$
V^{2}\|\mathbf{1}-q \delta P\|^{2}-2 V\langle\mathbf{1}-q \delta P, F-p \delta P\rangle+\|F-p \delta P\|^{2}
$$

This is, as expected, a quadratic polynomial in V, which can be written in the form $a(V-$ $b)^{2}+c$. Expressing p, q, a, b and c in the original probabilistic notation gives precisely the formulas of the Claim with $i=N-1$. The general inductive step is entirely similar.

Let's close by discussing the scope of this method. The case considered above - returns that are independent and identically distributed at each time step - is already of real interest. It includes the time discretization of the standard Black-Scholes marketplace, but it is much more general. For example, it can also be used to model a stock whose price process has jumps (see Section 3.3 of Bertsimas-Logan-Lo).
Moreover the framework is by no means restricted to the case of such simple price dynamics. All one really needs is that (i) the price is determined by a Markov process, and (ii) the payout at maturity depends on the final state of this process. Thus the same framework can be used for problems as diverse as:

- An exotic option whose payout is the maximum stock price between times 0 and N. Just replace the stock price process P_{j} with the process $\left(P_{j}, M_{j}\right)=$ (price at time j, max price through time j), defined by

$$
P_{j}=P_{j-1}\left(1+\phi_{j-1}\right), \quad M_{j}=\max \left\{P_{j}, M_{j-1}\right\}
$$

and replace the payout $F\left(P_{N}\right)$ by one of the form $F\left(M_{N}\right)$.

- Stochastic volatility. Just replace the stock price process P_{j} with a process $\left(P_{j}, \sigma_{j}\right)$ $=($ price at time j, volatility at time j), with the time-discretization of your favorite stochastic-volatility model as the dynamics. The payout would, in this case, still have the form $F\left(P_{N}\right)$.

