
PDE for Finance Notes, Spring 2000 – Section 3
Notes by Robert V. Kohn, Courant Institute of Mathematical Sciences. For use only in
connection with the NYU course PDE for Finance, G63.2706, Spring 2000.

Note on office hours: I’m out of town Wed-Fri, 2/16-18; therefore I won’t be holding
office hours Thursday 2/17. In addition, I must shift the time of my office hours on Thursday
2/24: they’ll be 10-11 AM instead of 4-5 PM. I’m also available by appointment as usual.

Comments on the Section 2 notes:

(a) On page 10 I applied the Pontryagin maximum principle to Example 3 (the example
with transaction costs). The version of Section 2 handed out in class got this wrong:
I forgot to take into account the discounting of utility. This has been corrected in the
version now on my web page.

(b) On page 4 I applied the Pontryagin maximum principle to Example 1 (our simplest
example with investment and consumption). My analysis was right, however it sailed
too quickly past an interesting, potentially confusing point. Our general (formal)
discussion “showed” that π(T ) = ∇g(y(T )). In the example, where g = 0, we obtained
π(s) = π(t)e−r(s−t). But then π(T ) cannot be zero! Evidently our formal argument
obtained a wrong result in this case. Why? Because the behavior at time T is rather
singular in this problem. What’s true is that π(s) = ux(y(s), s). But u = φ(t)xγ for
a suitable function φ of time (with φ(T ) = 0). So ux = γφxγ−1, which is singular at
x = 0 (since γ < 1). Moreover y(s) → 0 as s → T , since we assigned no utility to
final-time wealth. Thus u = 0 at t = T , but lims→0 ux(y(s), s) 6= 0. This issue would
not have arisen if we had included a positive “bequest term” in the utility.

*********************

Introduction to stochastic dynamic programming. Stochastic dynamic programming
is like deterministic dynamic programming except the equation of state is a stochastic
differential equation, and the goal is to maximize or minimize the expected utility or cost. To
see what new issues this raises we set up and discuss two examples, namely: (a) perturbation
of a deterministic problem by small noise, and (b) Merton’s optimal consumption problem
for one risky asset and a risk-free account. Our treatment basically follows Chapter VI of
Fleming and Rishel.

The continuous-time setting is powerful, but many interesting problems can be approached
as well or better in a discrete-time framework. Discrete-time problems will be discussed in
Section 4.

We shall be using some basic facts from stochastic calculus, mainly Ito’s Lemma. Chapters
9, 10, and 11 of Neftci’s book provide an accessible introduction to stochastic integration
and Ito’s lemma, for those who don’t already know it. Mainly what we’ll be using in this
section is
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• The fact that E
∫ b
a f dw = 0. (Here w is Brownian motion, E is expectation, and∫ b

a f dw is a stochastic integral.)

• The fact that if y solves the stochastic differential equation dy = fds + gdw then
z = φ(y) solves the stochastic differential equation dz = φ′(y)dy + 1

2φ′′(y)dydy =
[φ′(y)f + 1

2φ′′(y)g2]ds + φ′(y)gdw. (This is Ito’s lemma specialized to scalar-valued
processes.) We’ll also be using the vector-valued version of Ito’s formula.

You won’t need to know how to prove these facts – our plan is to accept them as tools and
explore their consequences for stochastic control. Chapters 9, 10, and 11 of Neftci’s book
provide a good introduction to stochastic calculus at a level appropriate to this course.
Section 4 of my 1999 PDE for Finance notes (on my web page) may also be helpful. I will
give one lecture on stochastic differential equations in a few weeks; but it will be intended
to pull things together, not to start from scratch.

****************************

Perturbation of a deterministic problem by small noise. We’ve discussed at length
the deterministic dynamic programming problem with state equation

dy/ds = f(y(s), α(s)) for t < s < T, y(t) = x,

controls α(s) ∈ A, and objective

max
α

{∫ T

t
h(y(s), α(s)) ds + g(y(T ))

}
.

Its value function satisfies the HJB equation

ut + H(∇u, x) = 0 for t < T, u(x, T ) = g(x),

with Hamiltonian
H(p, x) = max

a∈A
{f(x, a) · p + h(x, a)}. (1)

Let us show (heuristically) that when the state is perturbed by a little noise, the value
function of resulting stochastic control problem solves the perturbed HJB equation

ut + H(∇u, x) +
1
2
ε2∆u = 0 (2)

where H is still given by (1), and ∆u =
∑

i
∂2u
∂x2

i
. (Thus the “viscosity solution” of the

deterministic HJB – obtained by letting ε → 0 – is a natural thing to consider. It corresponds
to introducing a little noise, which serves to regularize the solution.)

Our phrase “perturbing the state by a little noise” means this: we replace the ODE gov-
erning the state by the stochastic differential equation (SDE)

dy = f(y, α)ds + εdw,
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keeping the initial condition y(t) = x. Here dw is a standard, vector-valued Brownian
motion (each component wi is a scalar-valued Brownian motion, and different components
are independent).

The evolution of the state is now stochastic, hence so is the value of the utility. Our goal
in the stochastic setting is to maximize the expected utility. The value function is thus

u(x, t) = max
α

Ey(t)=x

{∫ T

t
h(y(s), α(s)) ds + g(y(T ))

}
.

There is some subtlety to the question: what is the class of admissible controls? Of course
we still restrict α(s) ∈ A. But since the state is random, it’s natural for the control to be
random as well – however its value at time s should depend only on the past and present,
not on the future (which is after all unknown to the controller). Such controls are called
“non-anticipating.” A simpler notion, sufficient for most purposes, is to restrict attention
to feedback controls, i.e. to assume that α(s) is a deterministic function of s and y(s). One
can show (under suitable hypotheses, when the state equation is a stochastic differential
equation) that these two different notions of “admissible control” lead to the same optimal
value.

Courage. Let’s look for the HJB by applying the usual heuristic argument, based on the
principle of dynamic programming applied to a short time interval:

u(x, t) ≈ max
a∈A

{
h(x, a)∆t + Ey(t)=xu(y(t + ∆t), t + ∆t)

}
.

The term h(x, a)∆t approximates
∫ t+∆t
t h(y(s), a) ds, because we assume h is smooth and

y(s) = x + terms tending to 0 with ∆t. Notice that h(x, a)∆t is deterministic. The expres-
sion u(y(t+∆t), t+∆t) is the optimal expected utility starting from time t+∆t and spatial
point y(t + ∆t). We must take its expected value, because y(t + ∆t) is random. (If you
think carefully you’ll see that the Markov property of the process y(s) is being used here.)

We’re almost in familiar territory. In the deterministic case the next step was to express
u(y(t + ∆t), t + ∆t) using the state equation and the Taylor expansion of u. Here we do
something analogous: use Ito’s lemma and the stochastic differential equation. Ito’s lemma
says the process φ(s) = u(y(s), s) satisfies

dφ =
∂u

∂s
ds +

∑
i

∂u

∂yi
dyi +

1
2

∑
i,j

∂2u

∂yi∂yj
dyidyj

= ut(y(s), s)ds + ∇u · (f(y(s), α(s))ds + εdw) +
1
2
ε2∆u ds.

The real meaning of this statement is that

u(y(t′), t′) − u(y(t), t) =
∫ t′

t
[ut(y(s), s) + ∇u(y(s), s) · (f(y(s), α(s)) +

1
2
ε2∆u(y(s), s)]ds

+
∫ t′

t
ε∇u(y(s), s) · dw.
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The expected value of the second integral is 0, so

Ey(t)=x[u(y(t + ∆t), t + ∆t)] − u(x, t) ≈ [ut(x, t) + ∇u(x, t) · f(x, a) +
1
2
ε2∆u(x, t)]∆t.

Assembling these ingredients, we have

u(x, t) ≈ max
a∈A

{
h(x, a)∆t + u(x, t) + [ut(x, t) + ∇u(x, t) · f(x, a) +

1
2
ε2∆u(x, t)]∆t

}
.

This is almost identical to the relation we got in the deterministic case. The only difference
is the new term 1

2ε2∆u(x, t)∆t on the right. It doesn’t depend on a, so the optimal a is
unchanged – it still maximizes h(x, a) + f(x, a) · ∇u – and we conclude, as asserted, that u
solves (2).

****************************

Optimal portfolio selection and consumption. This is the simplest of a class of
problems solved by Robert Merton in his paper “Optimal consumption and portfolio rules
in a continuous-time model”, J. Economic Theory 3, 1971, 373-413 (reprinted in his book
Continuous Time Finance.) As you’ll see, the math is almost the same as our Example 1
– though the finance is more interesting.

We consider a world with one risky asset and one risk-free asset. The risk-free asset grows
at a constant risk-free rate r, i.e. its price per share satisfies dp1/dt = p1r. The risky asset
executes a geometric Brownian motion with constant drift µ > r and volatility σ, i.e. its
price per share solves the stochastic differential equation dp2 = µp2dt + σp2dw.

The control problem is this: an investor starts with initial wealth x at time t. His control
variables are

α1(s) = fraction of total wealth invested in the risky asset at time s

α2(s) = rate of consumption at time s.

It is natural to restrict these controls by 0 ≤ α1(s) ≤ 1 and α2(s) ≥ 0. We ignore transaction
costs. The state is the investor’s total wealth y as a function of time; it solves

dy = (1 − α1)yrdt + α1y(µdt + σdw) − α2dt

so long as y(s) > 0. We denote by τ the first time y(s) = 0 if this occurs before time T ,
or τ = T (a fixed horizon time) otherwise. The investor seeks to maximize the discounted
total utility of his consumption. We therefore consider the value function

u(x, t) = max
α1,α2

Ey(t)=x

∫ τ

t
e−ρsh[α2(s)] ds

where h[·] is a specified utility function (monotone increasing and concave, with h(0) = 0).
We shall specialize eventually to the power-law utility h(α2) = αγ

2 with 0 < γ < 1. (We
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have chosen, as in Example 1, to work with the utility discounted to time 0. It is also
possible, as in HW1, to work with the utility discounted to time t. The latter choice would
give an autonomous HJB equation, i.e. time would not appear explicitly in the equation.)

We find the HJB equation by essentially the same method used above. The principle of
dynamic programming applied on a short time interval gives:

u(x, t) ≈ max
a1,a2

{
e−ρth(a2)∆t + Ey(t)=xu(y(t + ∆t), t + ∆t)

}
.

To evaluate the expectation term, we use Ito’s lemma again. Using the state equation

dy = [(1 − α1)yr + α1yµ − α2]dt + α1yσdw

and skipping straight to the conclusion, we have

u(y(t′), t′)−u(y(t), t) =
∫ t′

t
[ut+uy[(1−α1)yr+α1yµ−α2]+

1
2
uyyy

2α2
1σ

2]dt+
∫ t′

t
α1σyuydw.

The expected value of the second integral is 0, so

Ey(t)=x[u(y(t + ∆t), t + ∆t)]− u(x, t) ≈ [ut + uy[(1 − α1)yr + α1yµ− α2 +
1
2
uyyy

2α2
1σ

2]∆t.

Assembling these ingredients,

u(x, t) ≈ max
a1,a2

{
e−ρth(a2)∆t + u(x, t) + [ut + ux[(1 − a1)xr + a1xµ − a2] +

1
2
uxxx2a2

1σ
2]∆t

}
.

Cleaning up, and taking the limit ∆t → 0, we get

ut + max
a1,a2

{
e−ρth(a2) + [(1 − a1)xr + a1xµ − a2]ux +

1
2
x2a2

1σ
2uxx

}
= 0.

This is the relevant HJB equation. It is to be solved for t < T , with u(x, T ) = 0 since we
have associated no utility associated to final-time wealth.

That looks pretty horrible, but it isn’t really so bad. First of all, if we constrain a1 = 0 it
reduces to the HJB equation from Example 1. (Well, it has to: if a1 = 0 then all investment
is in the risk-free asset, and the problem is Example 1.) So we charge ahead.

Let us assume ux > 0 (practically obvious: larger initial wealth should produce larger total
utility; what comparison argument would you use to prove it?). Let’s also assume uxx < 0
(not quite so obvious: this reflects the concavity of the utility function; it will be easy to
check it on our explicit solution at the end). Then the optimal a1 (ignoring the constraint
0 ≤ a1 ≤ 1) is

a∗1 = −(µ − r)ux

σ2xuxx

which is positive. We proceed, postponing till later the verification that a∗1 ≤ 1. The
optimal a2 satisfies

h′(a∗2) = eρtux;
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we can sure this a∗2 is positive by assuming that h′(0) = ∞.

To go further we now specialize to the power-law utility h(a2) = aγ
2 with 0 < γ < 1. The

same argument we used in the deterministic case shows that the solution must have the
form

u(x, t) = g(t)xγ .

The associated a∗1 and a∗2 are evidently

a∗1 =
(µ − r)

σ2(1 − γ)
, a∗2 =

[
eρtg(t)

]1/(γ−1)
x.

We assume henceforth that µ− r < σ2(1− γ) so that a∗1 < 1. Substituting these values into
the HJB equation gives, after some arithmetic,

dg

dt
+ νγg + (1 − γ)g(eρtg)1/(γ−1) = 0

with

ν = r +
(µ − r)2

2σ2(1 − γ)
.

We must solve this with g(T ) = 0. This is the same nonlinear equation we dealt with in
Example 1 – with ν in place of r. So we can go straight to the answer: u = g(t)xγ with

g(t) = e−ρt
[

1 − γ

ρ − νγ

(
1 − e

− (ρ−νγ)(T−t)
1−γ

)]1−γ

.

It should not be surprising that we had to place some restrictions on the parameters to
get this solution. When these restrictions fail, inequalities that previously didn’t bother us
become important (the restrictions 0 ≤ a1 ≤ 1, which prohibit borrowing and short-selling).

We have solved the HJB equation; but have we found the value function? The answer is
yes, as we now show using a verification argument.

*************************

The verification argument. In the deterministic case we used a heuristic argument to
derive the HJB equation, but then showed completely honestly that a (sufficiently smooth)
solution of the HJB equation (satisfying appropriate boundary or final-time conditions)
provides a bound on the value attainable by any control. A similar result holds in the
stochastic setting.

Rather than give a general result at this time, let’s focus on the example just completed
(Merton’s optimal selection and consumption problem). All the ideas required for the
general case are already present here. Brief review of our task: the state equation is

dy = [(1 − α1)yr + α1yµ − α2]dt + α1yσdw
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which we shall write for simplicity as

dy = f(y, α1, α2)dt + α1yσdw.

The value function is

u(x, t) = max
α

Ey(t)=x

∫ τ

t
e−ρsh[α2(s)] ds

where τ is either the first time y = 0 (if this happens before time T ) or τ = T (if y doesn’t
reach 0 before time T ). The HJB equation is

vt + max
a1,a2

{
e−ρth(a2) + f(x, a1, a2)vx +

1
2
x2a2

1σ
2vxx

}
= 0

for t < T , with v = 0 at t = T . We didn’t fuss over it before, but clearly v should also
satisfy v(0, s) = 0 for all s. We write v instead of u, to reserve notation u for the optimal
value. The goal of the verification argument is to show that v ≥ u, i.e. to show that no
control strategy can achieve an expected discounted utility better than v. Our argument
will also show that the feedback strategy associated with the HJB calculation – namely

α1(s) = −(µ − r)vx

σ2xvxx
(y(s), s), h′(α2)(s) = eρsvx(y(s), s) (3)

does indeed achieve expected discounted value v; in other words v ≤ u. This suffices of
course to show v = u.

Consider any control α̃(s), and the associated state ỹ(s) starting from ỹ(t) = x. Of course
we assume α̃ is non-anticipating, i.e. it depends only on knowledge of ỹ(s) in the present
and past, not the future. (If this condition confuses you, just assume α̃ is given by a
feedback law, i.e. α̃(s) = F (y(s), s) for some deterministic function F (y, s). Such controls
are automatically non-anticipating.) We wish to show that

v(x, t) ≥ Ey(t)=x

∫ τ̃

t
e−ρsh[α̃2(s)] ds.

Consider φ(s) = v(ỹ(s), s)): by the Ito calculus it satisfies

dφ = vsds + vydỹ +
1
2
vyydỹdỹ

= vsds + vy[f(α̃, ỹ)ds + α̃1(s)ỹ(s)σdw] +
1
2
vyyα̃

2
1(s)ỹ

2(s)σ2ds.

Therefore

v(ỹ(t′), t′) − v(ỹ(t), t) =
∫ t′

t
[vs + vyf +

1
2
vyy ỹ

2α̃2
1σ

2]dt +
∫ t′

t
σα̃1ỹvydw

where each integrand is evaluated at y = ỹ(s), α = α̃(s) at time s. The expected value
of the second integral is 0 (here is where we use that α is nonanticipating; we will return
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to this when we discuss stochastic integrals). Thus taking the expectation, and using the
initial condition:

E
[
v(ỹ(t′), t′)

] − v(x, t) = E

[∫ t′

t
(vs + vyf +

1
2
vyyỹ

2α̃2
1σ

2)dt

]
.

Now from the definition of the Hamiltonian we have

vt(ỹ(s), s) +
{

e−ρsh(α̃2(s)) + f(ỹ(s), α̃(s))vy(ỹ(s), s) +
1
2
ỹ2(s)α̃2

1(s)σ
2vyy(ỹ(s), s)

}
≤ 0.

(4)
Combining this with the preceding relation gives

E
[
v(ỹ(t′), t′)

] − v(x, t) ≤ −E

[∫ t′

t
e−ρsh(α̃2(s)ds

]
.

Taking t′ = τ̃ and using the fact that v(ỹ(t′), t′) = 0, we conclude that

v(x, t) ≥ E

[∫ τ̃

t
e−ρsh(α̃(s)ds

]
.

Maximizing the right hand side over all α̃ we conclude that

v ≥ u

For the special feedback law associated with the HJB equation, which fixes the control α
by (3), relation (4) becomes equality. This shows that v ≤ u, since v is the value achieved
by a specific control strategy and u is the maximum value over all possible strategies. Thus
v = u. In summary: the function v, defined by solving the HJB equation with appropriate
boundary and initial conditions, is in fact the value function of this stochastic control
problem, and the control strategy (3) is indeed optimal.

Notice that this calculation rests on pretty much the same tools we used to derive the HJB:
(a) the Ito calculus, to get a representation of u(ỹ(s), s), and (b) the fact that the integral
“dw” has expected value 0.
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