PDE for Finance, Spring 2000 - Homework 6

Distributed 4/18/00, due 4/25/00. Solutions will be distributed 5/2/00.

Reminders:

- The last class is Tuesday May 2.
- The final exam is Tuesday May 9. You may bring two sheets of notes -8.5×11, both sides, write as small as you like.

1) Consider linear heat equation $u_{t}-u_{x x}=0$ in one space dimension, with discontinuous initial data

$$
u(x, 0)= \begin{cases}0 & \text { if } x<0 \\ 1 & \text { if } x>0\end{cases}
$$

(a) Show by evaluating the solution formula that

$$
u(x, t)=\frac{1}{2}[1+\phi(x / \sqrt{4 t})]
$$

where ϕ is the "error function"

$$
\phi(s)=\frac{2}{\sqrt{\pi}} \int_{0}^{s} e^{-r^{2}} d r
$$

(b) Explore the solution by answering the following: what is $\max _{x} u_{x}(x, t)$ as a function of time? Where is it achieved? What is $\min _{x} u_{x}(x, t)$? For which x is $u_{x}>$ $(1 / 10) \max _{x} u_{x}$? Sketch the graph of u_{x} as a function of x at a given time $t>0$.
(c) Show that $v(x, t)=\int_{-\infty}^{x} u(z, t) d z$ solves $v_{t}-v_{x x}=0$ with $v(x, 0)=\max \{x, 0\}$. Deduce the qualitative behavior of $v(x, t)$ as a function of x for given t : how rapidly does v tend to 0 as $x \rightarrow-\infty$? What is the behavior of v as $x \rightarrow \infty$? What is the value of $v(0, t)$? Sketch the graph of $v(x, t)$ as a function of x for given $t>0$.
[Comment: this problem is intended to give intuition concerning the value near maturity of a European call.]
2) This problem can be done in any space dimension, but we stick to 1 D for simplicity. Consider the stochastic differential equation $d y=f(y, s) d s+g(y, s) d w$, and the associated backward and forward Kolmogorov equations

$$
u_{t}+f(x, t) u_{x}+\frac{1}{2} g^{2}(x, t) u_{x x}=0 \quad \text { for } t<T, \text { with } u=\Phi \text { at } t=T
$$

and

$$
\rho_{s}+(f(z, s) \rho)_{z}-\frac{1}{2}\left(g^{2}(z, s) \rho\right)_{z z}=0 \quad \text { for } s>0, \text { with } \rho(z)=\rho_{0}(z) \text { at } s=0
$$

Recall that $u(x, t)$ is the expected value (starting from x at time t) of payoff $\Phi(y(T)$), whereas $\rho(z, s)$ is the probability distribution of the diffusing state $y(s)$ (if the initial distribution is ρ_{0}).
(a) The solution of the backward equation has the following property: if $m=\min _{z} \Phi(z)$ and $M=\max _{z} \Phi(z)$ then $m \leq u(x, t) \leq M$ for all $t<T$. Give two distinct justifications: one using the maximum principle for the PDE, the other using the probabilistic interpretation.
(b) The solution of the forward equation does not in general have the same property; in particular, $\max _{z} \rho(z, s)$ can be larger than the maximum of ρ_{0}. Explain why, by considering the example $d y=-y d s$. (Intuition: $y(s)$ moves toward the origin; in fact, $y(s)=e^{-s} y_{0}$. Viewing $y(s)$ as the position of a moving particle, we see that particles tend to collect at the origin no matter where they start. So $\rho(z, s)$ should be increasingly concentrated at $z=0$.) Show that the solution in this case is $\rho(z, s)=e^{s} \rho_{0}\left(e^{s} z\right)$. This example has $g=0$; can you suggest what would happen when $g=\epsilon$, a sufficiently small constant?
3) The solution of the forward Kolmogorov equation is a probability density, so we expect it to be nonnegative (assuming the initial condition $\rho_{0}(z)$ is everywhere nonnegative). In light of Problem 2b it's natural to worry whether the PDE has this property. Let's show that it does.
(a) Consider the initial-boundary-value problem

$$
w_{t}=a(x, t) w_{x x}+b(x, t) w_{x}+c(x, t) w
$$

with x in the interval $(0,1)$ and $0<t<T$. We assume as usual that $a(x, t)>0$. Suppose furthermore that $c<0$ for all x and t. Show that if $0 \leq w \leq M$ at the initial time and the spatial boundary then $0 \leq w \leq M$ for all x and t. (Hint: a positive maximum cannot be achieved in the interior or at the final boundary. Neither can a negative minimum.)
(b) Now consider the same PDE but with $\max _{x, t} c(x, t)$ positive. Suppose the initial and boundary data are nonnegative. Show that the solution w is nonnegative for all x and t. (Hint: apply part (a) not to w but rather to $\bar{w}=e^{-C t} w$ with a suitable choice of C.)
(c) Consider the solution of the forward Kolmogorov equation in the interval, with $\rho=0$ at the boundary. (It represents the probability of arriving at z at time s without hitting the boundary first.) Show using part (b) that $\rho(z, s) \geq 0$ for all s and z. What is the condition on f and g that $\max _{z} \rho(z, s) \leq \max \rho_{0}$? How does this condition generalize to the multidimensional case?
[Comment: statements analogous to (a)-(c) are valid for the initial-value problem as well, when we solve for all $x \in R$ rather than for x in a bounded domain. The justification takes a little extra work however, and it requires some hypothesis on the growth of the solution at ∞.]
4) Consider the solution of

$$
u_{t}+a u_{x x}=0 \quad \text { for } t<T, \text { with } u=\Phi \text { at } t=T
$$

where a is a positive constant. Recall that in the stochastic interpretation, a is $\frac{1}{2} g^{2}$ where g represents volatility. Let's use the maximum principle to understand qualitatively how the solution depends on volatility.
(a) Show that if $\Phi_{x x} \geq 0$ for all x then $u_{x x} \geq 0$ for all x and t.
(b) Suppose \bar{u} solves the analogous equation with a replaced by $\bar{a}>a$, using the same final-time data Φ. We continue to assume that $\Phi_{x x} \geq 0$. Show that $\bar{u} \geq u$ for all x and t. (Hint: $w=\bar{u}-u$ solves $w_{t}+\bar{a} w_{x x}=f$ with $f=(a-\bar{a}) u_{x x} \leq 0$.)
(c) Do the conclusions of (a) and (b) remain valid when volatility is non-constant, i.e. $a=a(x, t)$ is a deterministic function of x and t ?
[Comment: The Black-Scholes PDE for options on a lognormal asset can be reduced by change of variables to the linear heat equation. For a call, the relevant choice of Φ has the form $\Phi(x)=\max \left\{e^{\alpha x}-e^{(\alpha-1) x}, 0\right\}$ for a suitable choice of $\alpha>0$. This problem shows that increasing the volatility of the underlying asset increases the value of the call. The same argument does not work for a put - why not?]
5) Early this semester we encountered the Hopf-Lax solution formula for the HJ equation $u_{t}+H(\nabla u)=0$ with H is convex, and we discussed at length the example

$$
u_{t}+\frac{1}{2} u_{x}^{2}=0 \quad \text { for } t<T \text { with } u=\Phi \text { at } t=T,
$$

for which the Hopf-Lax formula gives

$$
u(x, t)=\max _{z}\left\{\Phi(z)-\frac{|z-x|^{2}}{2(T-t)}\right\}
$$

The PDE has many "almost-everywhere" solutions, but the one given by the Hopf-Lax formula is special: it (a) gives the value function for an associated control problem, and (b) gives the "viscosity solution" of the HJ equation. Restatement of the latter: it is the solution obtained by solving

$$
u_{t}+\frac{1}{2} u_{x}^{2}+\epsilon u_{x x}=0 \quad \text { for } t<T \text { with } u=\Phi \text { at } t=T,
$$

with $\epsilon>0$, then taking the limit $\epsilon \rightarrow 0$. Let's explore a trick which makes this limit (in this special case) very explicit:
(a) Consider the function $w=e^{u / 2 \epsilon}$. Show that $w_{t}+\epsilon w_{x x}=0$ with $w=e^{\Phi / 2 \epsilon}$ at $t=T$.
(b) Deduce the solution formula:

$$
e^{u(x) / 2 \epsilon}=\frac{1}{\sqrt{4 \pi \epsilon(T-t)}} \int_{-\infty}^{\infty} e^{\frac{1}{2 \epsilon}\left[\Phi(z)-\frac{|x-z|^{2}}{2(T-t)}\right]} d z
$$

[Comment: One can show that this reduces to the Hopf-Lax formula in the limit $\epsilon \rightarrow 0$. The idea is easy, though the details take some work: when ϵ is small, the integral is dominated
by the z^{\prime} 's where $\Phi(z)-\frac{|x-z|^{2}}{2(T-t)}$ is largest. The change of variables $w=e^{u / 2 \epsilon}$ is known as the Hopf-Cole transformation.]
6) Consider the standard finite difference scheme
$\frac{u((m+1) \Delta t, n \Delta x)-u(m \Delta t, n \Delta x)}{\Delta t}=\frac{u(m \Delta t,(n+1) \Delta x)-2 u(m \Delta t, n \Delta x)+u(m \Delta t,(n-1) \Delta x)}{(\Delta x)^{2}}$
for solving $u_{t}-u_{x x}=0$. The stability restriction $\Delta t<\frac{1}{2} \Delta x^{2}$ leaves a lot of freedom in the choice of Δx and Δt. Show that

$$
\Delta t=\frac{1}{6} \Delta x^{2}
$$

is special, in the sense that the numerical scheme (1) has errors of order Δx^{4} rather than Δx^{2}. In other words: when u is the exact solution of the PDE, the left and right sides of (1) differ by a term of order Δx^{4}. [Comment: the argument sketched at the end of the Section 6 notes shows that if u solves the PDE and v solves the finite difference scheme then $|u-v|$ is of order Δx^{2} in general, but it is smaller - of order $\Delta x^{4}-$ when $\Delta t=\frac{1}{6} \Delta x^{2}$.]

