
PDE for Finance, Spring 2000 – Homework 6
Distributed 4/18/00, due 4/25/00. Solutions will be distributed 5/2/00.

Reminders:

• The last class is Tuesday May 2.

• The final exam is Tuesday May 9. You may bring two sheets of notes – 8.5× 11, both
sides, write as small as you like.

1) Consider linear heat equation ut − uxx = 0 in one space dimension, with discontinuous
initial data

u(x, 0) =

{
0 if x < 0
1 if x > 0.

(a) Show by evaluating the solution formula that

u(x, t) =
1
2

[
1 + φ(x/

√
4t)

]
where φ is the “error function”

φ(s) =
2√
π

∫ s

0
e−r2

dr.

(b) Explore the solution by answering the following: what is maxx ux(x, t) as a func-
tion of time? Where is it achieved? What is minx ux(x, t)? For which x is ux >
(1/10)maxx ux? Sketch the graph of ux as a function of x at a given time t > 0.

(c) Show that v(x, t) =
∫ x
−∞ u(z, t) dz solves vt − vxx = 0 with v(x, 0) = max{x, 0}.

Deduce the qualitative behavior of v(x, t) as a function of x for given t: how rapidly
does v tend to 0 as x → −∞? What is the behavior of v as x → ∞? What is the
value of v(0, t)? Sketch the graph of v(x, t) as a function of x for given t > 0.

[Comment: this problem is intended to give intuition concerning the value near maturity of
a European call.]

2) This problem can be done in any space dimension, but we stick to 1D for simplicity.
Consider the stochastic differential equation dy = f(y, s)ds + g(y, s)dw, and the associated
backward and forward Kolmogorov equations

ut + f(x, t)ux + 1
2g2(x, t)uxx = 0 for t < T , with u = Φ at t = T

and

ρs + (f(z, s)ρ)z − 1
2(g2(z, s)ρ)zz = 0 for s > 0, with ρ(z) = ρ0(z) at s = 0.

Recall that u(x, t) is the expected value (starting from x at time t) of payoff Φ(y(T )),
whereas ρ(z, s) is the probability distribution of the diffusing state y(s) (if the initial dis-
tribution is ρ0).
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(a) The solution of the backward equation has the following property: if m = minz Φ(z)
and M = maxz Φ(z) then m ≤ u(x, t) ≤ M for all t < T . Give two distinct justifica-
tions: one using the maximum principle for the PDE, the other using the probabilistic
interpretation.

(b) The solution of the forward equation does not in general have the same property;
in particular, maxz ρ(z, s) can be larger than the maximum of ρ0. Explain why,
by considering the example dy = −yds. (Intuition: y(s) moves toward the origin;
in fact, y(s) = e−sy0. Viewing y(s) as the position of a moving particle, we see
that particles tend to collect at the origin no matter where they start. So ρ(z, s)
should be increasingly concentrated at z = 0.) Show that the solution in this case
is ρ(z, s) = esρ0(esz). This example has g = 0; can you suggest what would happen
when g = ε, a sufficiently small constant?

3) The solution of the forward Kolmogorov equation is a probability density, so we expect
it to be nonnegative (assuming the initial condition ρ0(z) is everywhere nonnegative). In
light of Problem 2b it’s natural to worry whether the PDE has this property. Let’s show
that it does.

(a) Consider the initial-boundary-value problem

wt = a(x, t)wxx + b(x, t)wx + c(x, t)w

with x in the interval (0, 1) and 0 < t < T . We assume as usual that a(x, t) > 0.
Suppose furthermore that c < 0 for all x and t. Show that if 0 ≤ w ≤ M at the initial
time and the spatial boundary then 0 ≤ w ≤ M for all x and t. (Hint: a positive
maximum cannot be achieved in the interior or at the final boundary. Neither can a
negative minimum.)

(b) Now consider the same PDE but with maxx,t c(x, t) positive. Suppose the initial and
boundary data are nonnegative. Show that the solution w is nonnegative for all x and
t. (Hint: apply part (a) not to w but rather to w̄ = e−Ctw with a suitable choice of
C.)

(c) Consider the solution of the forward Kolmogorov equation in the interval, with ρ = 0
at the boundary. (It represents the probability of arriving at z at time s without
hitting the boundary first.) Show using part (b) that ρ(z, s) ≥ 0 for all s and z. What
is the condition on f and g that maxz ρ(z, s) ≤ max ρ0? How does this condition
generalize to the multidimensional case?

[Comment: statements analogous to (a)-(c) are valid for the initial-value problem as well,
when we solve for all x ∈ R rather than for x in a bounded domain. The justification takes
a little extra work however, and it requires some hypothesis on the growth of the solution
at ∞.]

4) Consider the solution of

ut + auxx = 0 for t < T , with u = Φ at t = T
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where a is a positive constant. Recall that in the stochastic interpretation, a is 1
2g2 where g

represents volatility. Let’s use the maximum principle to understand qualitatively how the
solution depends on volatility.

(a) Show that if Φxx ≥ 0 for all x then uxx ≥ 0 for all x and t.

(b) Suppose ū solves the analogous equation with a replaced by ā > a, using the same
final-time data Φ. We continue to assume that Φxx ≥ 0. Show that ū ≥ u for all x
and t. (Hint: w = ū − u solves wt + āwxx = f with f = (a − ā)uxx ≤ 0.)

(c) Do the conclusions of (a) and (b) remain valid when volatility is non-constant, i.e.
a = a(x, t) is a deterministic function of x and t?

[Comment: The Black-Scholes PDE for options on a lognormal asset can be reduced by
change of variables to the linear heat equation. For a call, the relevant choice of Φ has the
form Φ(x) = max{eαx − e(α−1)x, 0} for a suitable choice of α > 0. This problem shows that
increasing the volatility of the underlying asset increases the value of the call. The same
argument does not work for a put – why not?]

5) Early this semester we encountered the Hopf-Lax solution formula for the HJ equation
ut + H(∇u) = 0 with H is convex, and we discussed at length the example

ut + 1
2u2

x = 0 for t < T with u = Φ at t = T ,

for which the Hopf-Lax formula gives

u(x, t) = max
z

{Φ(z) − |z − x|2
2(T − t)

}.

The PDE has many “almost-everywhere” solutions, but the one given by the Hopf-Lax
formula is special: it (a) gives the value function for an associated control problem, and
(b) gives the “viscosity solution” of the HJ equation. Restatement of the latter: it is the
solution obtained by solving

ut + 1
2u2

x + εuxx = 0 for t < T with u = Φ at t = T ,

with ε > 0, then taking the limit ε → 0. Let’s explore a trick which makes this limit (in
this special case) very explicit:

(a) Consider the function w = eu/2ε. Show that wt + εwxx = 0 with w = eΦ/2ε at t = T .

(b) Deduce the solution formula:

eu(x)/2ε =
1√

4πε(T − t)

∫ ∞

−∞
e

1
2ε

[
Φ(z)− |x−z|2

2(T−t)

]
dz

[Comment: One can show that this reduces to the Hopf-Lax formula in the limit ε → 0. The
idea is easy, though the details take some work: when ε is small, the integral is dominated
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by the z’s where Φ(z)− |x−z|2
2(T−t) is largest. The change of variables w = eu/2ε is known as the

Hopf-Cole transformation.]

6) Consider the standard finite difference scheme

u((m + 1)∆t, n∆x) − u(m∆t, n∆x)
∆t

=
u(m∆t, (n + 1)∆x) − 2u(m∆t, n∆x) + u(m∆t, (n − 1)∆x)

(∆x)2
(1)

for solving ut − uxx = 0. The stability restriction ∆t < 1
2∆x2 leaves a lot of freedom in the

choice of ∆x and ∆t. Show that
∆t =

1
6
∆x2

is special, in the sense that the numerical scheme (1) has errors of order ∆x4 rather than
∆x2. In other words: when u is the exact solution of the PDE, the left and right sides of (1)
differ by a term of order ∆x4. [Comment: the argument sketched at the end of the Section
6 notes shows that if u solves the PDE and v solves the finite difference scheme then |u− v|
is of order ∆x2 in general, but it is smaller – of order ∆x4 – when ∆t = 1

6∆x2.]
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