
PDE for Finance, Spring 2000 – Homework 5
Distributed 3/28/00, due 4/11/00. Solutions will be distributed 4/18/00.

The Black-Scholes-Merton theory of option pricing gives the value of an option as the
(discounted) expected value of its payoff with respect to the risk-neutral dynamics. The
following problems are intended to give insight about various types of options. However
we don’t attempt to identify the risk-neutral dynamics – that’s Math Finance II material.
Rather, we consider the expected value of the payoff (sometimes discounted, sometimes
not) under some given dynamics. The books by Wilmott, Dewynne, and Howison are good
sources for further reading; the hardback Option Pricing (on reserve in the CIMS library)
contains more information than its paperback sibling.

1) Consider the lognormal process with drift µ and volatility σ (both assumed constant):

dy = µyds + σydw.

(a) Show that the backward Kolmogorov equation solved by

u(x, t) = Ey(t)=x [Φ(y(T ))]

is
ut + µxux + 1

2σ2x2uxx = 0

for t < T , with final-time condition u(x, T ) = Φ(x).

(b) Verify using Ito’s lemma that y(s) = ez(s) where z solves

dz = (µ − 1
2σ2)ds + σdw.

Deduce, using the backward Kolmogorov equation for z, that v(x, t) = u(ex, t) solves
the constant-coefficient PDE

vt + (µ − 1
2σ2)vx + 1

2σ2vxx = 0

for t < T , with final-time condition v(x, T ) = Φ(ex).

(c) Show that the substitution v(x, t) = e−αx−βtw(x, t) leads to the linear heat equation
wt + 1

2σ2wxx = 0 when α and β are chosen so that ασ2 = µ − 1
2σ2 and β = 1

2σ2α2 −
α(µ − 1

2σ2). (It’s easy to solve for α and β, but I’m not asking you to do so.)

(d) Reconsider parts (a)-(b)-(c) when the definition of u is changed by introducing a
discount term, with constant discount rate r:

u(x, t) = Ey(t)=x

[
e−r(T−t)Φ(y(T ))

]
.

Note: the role of the backward Kolmogorov equation is now played by the Feynman-
Kac formula.
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2) If the (instantaneous) interest rate satisfies a stochastic differential equation

dr = f(r, s)ds + g(r, s)dw

with r(t) = x, then the expected present value of one dollar received at time T > t is

u(x, t) = Ey(t)=x

[
e−
∫ T

t
r(s)ds

]
.

What PDE does the Feynman-Kac formula give us for u? Be sure to specify the final-time
condition for u(x, T ).

3) Consider the lognormal random walk with constant drift and volatility

dy = µyds + σydw, y(t) = x.

One type of barrier option has payoff Φ(y(T )) (where Φ is a specified function) if y(s)
remains in a specified interval a < y < b, but payoff 0 if y(s) touches either barrier a or b
before time T . Of course we assume that the initial value x lies between a and b.

(a) Let u(x, t) be the (undiscounted) expected payoff. What PDE does u solve? (Be sure
to specify the final-time and boundary conditions. You need not actually solve the
equation.)

(b) Let v(x, t) be the probability that the random walk hits one of the barriers before
time T . What PDE does v solve? (Be sure to specify the final-time and boundary
conditions. You need not actually solve the equation.)

4) We continue to consider issues related to barrier options, for the lognormal random walk
of problem 3. The Section 5 notes (page 6) consider the mean exit time u, i.e. the expected
time at which y exits from (a, b). We used there the PDE

µxux + 1
2σ2x2uxx = −1 for a < x < b (1)

with boundary conditions u(a) = u(b) = 0 to derive an explicit formula for u. Assume for
the following that 0 < a < b, and (except for part d) that µ 6= 1

2σ2.

(a) Show that the general solution of (1), without taking any boundary conditions into
account, is

u =
1

1
2σ2 − µ

log x + c1 + c2x
γ

with γ = 1−2µ/σ2. Here c1 and c2 are arbitrary constants. [The formula given in the
notes for the mean exit time is easy to deduce from this fact, by using the boundary
conditions to solve for c1 and c2; however you need not do this calculation as part of
your homework.]

(b) Argue as in the Section 5 notes to show that the mean exit time from the interval
(a, b) is finite. (Hint: mimic the argument used in the answer to Question 3, using
φ(y) = log y.)
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(c) Let pa be the probability that the process exits at a, and pb = 1 − pa the probability
that it exits at b. Give an equation for pa in terms of the barriers a, b and the
initial value x. (Hint: mimic the argument used in the answer to Question 4, using
φ(y) = yγ .) How does pa behave in the limit a → 0?

(d) What happens when µ = 1
2σ2?

5) An “Asian option” has the property that its payoff at maturity depends on the average
value of the asset price from 0 < t < T , as well as on the asset price itself. So it’s of interest
to evaluate

Ey(0)=x

[
Φ

(
y(T ),

1
T

∫ T

0
y(s)ds

)]

where Φ is a specified function of two (positive) variables. We assume for simplicity that y
is described by the usual lognormal process

dy = µyds + σydw.

(a) Show that if z(s) =
∫ s
t y(p)dp then (y(s), z(s)) solves

dy = µyds + σydw

dz = yds

with initial condition y(t) = x, z(t) = 0.

(b) Show that

u(x, ξ; t) = Ey(t)=x,z(t)=ξ

[
Φ
(

y(T ),
1
T

z(T )
)]

solves the backward Kolmogorov PDE

ut + µxux + xuξ + 1
2σ2x2uxx = 0

for t < T , with final value u(x, ξ;T ) = Φ(x, ξ/T ) at t = T .

(c) Conclude that Ey(0)=x

[
Φ
(
y(T ), 1

T

∫ T
0 y(s)ds

)]
is equal to u(x, 0; 0).

[Comment: the expected value of a function of y(T ) and max0<s<T y(s) can be valued
by a similar technique; this is related to the pricing of “lookback options.” See Wilmott,
Howison, and Dewynne.]
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