
PDE for Finance, Spring 2000 – Homework 4
Distributed 3/7/00, due 3/21/00. Solutions will be distributed 3/28/00.

1) Problem 4 of HW3 considered the stochastic “linear quadratic regulator” problem in
continuous time. Here is the analogous stochastic discrete-time problem. We label times
by k = 0, 1, . . . . The state at time k is yk ∈ Rn, and the control at time k is αk ∈ Rn. We
place no restriction on the possible values of αk. The state equation is

yk+1 = Ayk + αk + ek

where A is a (known) n × n matrix, and the ek’s are independent, identically distributed
random variables with mean value 0 and finite variance. We emphasize that ek is indepen-
dent of yk and αk. The initial condition is y0 = x, and the goal is to minimize the expected
cost

Ey0=x

{
N−1∑
k=0

[|yk|2 + |αk|2] + |yN |2
}

.

The interpretation is the same as in the continuous case: we prefer y = 0. The system
keeps getting perturbed away from this state by noise; the control must be chosen to bring
it back, but there is also a cost associated to the control itself.

Let Jk(x) be the minimum expected cost if the initial stage is k and the initial state is x.
Observe that JN (x) = |x|2.

(a) Write the dynamic programming relation connecting Jk to Jk+1.

(b) Look for a solution of the form Jk(x) = 〈Kkx, x〉+qk, where Kk is a symmetric matrix
and qk is a scalar. Show that Kk satisfies the following recurrence relation:

Kk = AT
[
Kk+1 − Kk+1(Kk+1 + I)−1Kk+1

]
A + I

with KN = I. How is (the optimal) αk related to yk? What is the value of qk?

(Remark: For much more about the discrete-time LQR problem see section 2.1 of Bertsekas.)

2) This problem develops a continuous-time analogue of the simple Bertsimas & Lo model
of “Optimal control of execution costs” presented in the Section 4 notes. The state is (w, p),
where w is the number of shares yet to be purchased and p is the current price per share.
The control α(s) is the rate at which shares are purchased. The state equation is:

dw = −α ds for t < s < T , w(t) = w0

dp = θα ds + σdz for t < s < T , p(t) = p0

where dz is Brownian motion and θ, σ are fixed constants. The goal is to minimize, among
(nonanticipating) controls α(s), the expected cost

E

{∫ T

t
[p(s)α(s) + θα2(s)] ds + [p(T )w(T ) + θw2(T )]

}
.

The optimal expected cost is the value function u(w0, p0, t).
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(a) Show that the HJB equation for u is

ut + H(uw, up, p) +
σ2

2
upp = 0

for t < T , with Hamiltonian

H(uw, up, p) = − 1
4θ

(p + θup − uw)2.

The final value is of course

u(w, p, T ) = pw + θw2.

(b) Look for a solution of the form u(w, p, t) = pw + g(t)w2. Show that g solves

ġ =
1
4θ

(θ − 2g)2

for t < T , with g(T ) = θ. Notice that u does not depend on σ, i.e. setting σ = 0 gives
the same value function.

(c) Solve for g. (Hint: start by rewriting the equation for g, “putting all the g’s on the
left and all the t’s on the right”.)

(d) Show by direct examination of your solution that the optimal α(s) is constant.

(e) Give another proof that the optimal α(s) is constant, by examining the deterministic
version of this control problem (σ = 0) and arguing roughly as we did for the Hopf-Lax
solution formula (using the convexity of α2).

(Remark: a better choice of objective would be
E

{∫ T
t [p(s)α(s) + θ′α2(s)] ds + [p(T )w(T ) + θ′′w2(T )]

}
for some constants θ′, θ′′, since the

state equation gives θ units of dollars/(share)2, whereas the units of θ′ and θ′′ are different.
Food for thought: what happens if one takes the running cost to be

∫ T
t p(s)α(s) ds instead

of
∫ T
t p(s)α(s) + θα2(s) ds?)

3) [from Bertsekas: chapter 2, problem 12]. A gambler plays a game in which he may at
each time k stake any amount uk ≥ 0 that does not exceed his current fortune xk (defined
to be his initial capital plus his gain or minus his loss thus far). He wins his stake back and
as much more with probability p, where 1

2 < p < 1, and he loses his stake with probability
(1 − p). His goal is to maximize E{log xN}, where xN is his fortune after N plays. Let’s
give two separate proofs that his optimal policy is to stake, at each play, 2p − 1 times his
current fortune (i.e. to choose uk = (2p − 1)xk).

(a) Let x0 be the gambler’s initial capital, and let qk = uk/xk be the fraction of his wealth
he stakes at time k. His return at time k is

Rk =

{
(1 + qk) with probability p
(1 − qk) with probability 1 − p

2



in the sense that xk+1 = Rkxk. It follows that

log xN = log x0 + log R0 + . . . + log RN−1,

whence
E[log xN ] = log x0 + E[log R0] + . . . + E[log RN−1].

Show that E[log Rk] is maximized, for each k, by the choice qk = 2p − 1.

(b) Give an alternative analysis based on the principle of dynamic programming. Use
Jk(xk) = E[log xN ] as your value function, where k is the current time, xk is the
current wealth, and the expectation refers to all remaining uncertainty (the outcome
of betting at times k, . . . ,N − 1).

[Remark: the first approach works – i.e. the method of dynamic programming isn’t really
needed here – because the optimal policy is “myopic,” i.e. it optimizes each time step
separately. This is a special to the use of log xN as the objective.]

4) [from Bertsekas: chapter 2, problem 19]. A driver is looking for a parking place on
the way to his destination. Each parking place is free with probability p, independent of
whether other parking spaces are free or not. The driver cannot observe whether a parking
place is free until he reaches it. If he parks k places from his destination, he incurs a cost
k. If he reaches the destination without having parked the cost is C.

(a) Let Fk be the minimal expected cost if he is k parking places from his destination.
Show that

F0 = C

Fk = p min[k, Fk−1] + qFk−1, k = 1, 2, . . .

where q = 1 − p.

(b) Show that an optimal policy is of the form: never park if k ≥ k∗, but take the first
free place if k < k∗, where k is the number of parking places from the destination,
and k∗ is the smallest integer i satisfying qi−1 < (pC + q)−1.

5) The Section 4 notes discuss work by Bertsimas, Logan, and Lo involving least-square
replication of a European option. The analysis there assumes all trades are self-financing,
so the value of the portfolio at consecutive times is related by

Vj − Vj−1 = θj−1(Pj − Pj−1).

Let’s consider what happens if trades are permitted to be non-self-financing. This means
we introduce an additional control gj , the amount of cash added to (if gj > 0) or removed
from (if gj < 0) the portfolio at time j, and the portfolio values now satisfy

Vj − Vj−1 = θj−1(Pj − Pj−1) + gj−1.
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It is natural to add a quadratic expression involving the g’s to the objective: now we seek
to minimize

E


(VN − F (PN ))2 + α

N−1∑
j=0

g2
j




where α is a positive constant. The associated value function is

Ji(V, P ) = min
θi,gi;...;θN−1,gN−1

EVi=V, Pi=P


(VN − F (PN ))2 + α

N−1∑
j=i

g2
j


 .

The claim enunciated in the Section 4 notes remains true in this modified setting: Ji can
be expressed as a quadratic polynomial

Ji(Vi, Pi) = āi(Pi)|Vi − b̄i(Pi)|2 + c̄i(Pi)

where āi, b̄i, and c̄i are suitably-defined functions which can be constructed inductively.
Demonstrate this assertion in the special case i = N −1, and explain how āN−1, b̄N−1, c̄N−1

are related to the functions aN−1, bN−1, cN−1 of the Section 4 notes.
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