1) Our geometric Example 2 gave $|\nabla u|=1$ in D (with $u=0$ at ∂D) as the HJB equation associated with starting at a point x in some domain D, traveling with speed at most 1 , and arriving at ∂D as quickly as possible. Let's consider what becomes of this problem when we introduce a little noise. The state equation becomes

$$
d y=\alpha(s) d s+\epsilon d w, \quad y(0)=x
$$

where $\alpha(s)$ is a (non-anticipating) control satisfying $|\alpha(s)| \leq 1, y$ takes values in R^{n}, and each component of w is an independent Brownian motion. Let $\tau_{x, \alpha}$ denote the arrival time:

$$
\tau_{x, \alpha}=\text { time when } y(s) \text { first hits } \partial D
$$

which is of course random. The goal is now to minimize the expected arrival time at ∂D, so the value function is

$$
u(x)=\min _{|\alpha(s)| \leq 1} E_{y(0)=x}\left\{\tau_{x, \alpha}\right\}
$$

(a) Show, using an argument similar to that in the Section 3 notes, that u solves the PDE

$$
1-|\nabla u|+\frac{1}{2} \epsilon^{2} \Delta u=0 \quad \text { in } D
$$

with boundary condition $u=0$ at ∂D.
(b) Your answer to (a) should suggest a specific feedback strategy for determining $\alpha(s)$ in terms of $y(s)$. What is it?
2) Let's solve the differential equation from the last problem explicitly, for the special case when $D=[-1,1]$:

$$
\begin{aligned}
1-\left|u_{x}\right|+\frac{1}{2} \epsilon^{2} u_{x x} & =0 \quad \text { for }-1<x<1 \\
u & =0 \quad \text { at } x= \pm 1
\end{aligned}
$$

(a) Assuming that the solution u is unique, show it satisfies $u(x)=u(-x)$. Conclude that $u_{x}=0$ and $u_{x x}<0$ at $x=0$. Thus u has a maximum at $x=0$.
(b) Notice that $v=u_{x}$ solves $1-|v|+\delta v_{x}=0$ with $\delta=\frac{1}{2} \epsilon^{2}$. Show that

$$
\begin{array}{cl}
v=-1+e^{-x / \delta} & \text { for } 0<x<1 \\
v=+1-e^{x / \delta} & \text { for }-1<x<0
\end{array}
$$

Integrate once to find a formula for u.
(c) Verify that as $\epsilon \rightarrow 0$, this solution approaches $1-|x|$.
[Comment: the assumption of uniqueness in part (a) is convenient, but it can be avoided. Outline of how to do this: observe that any critical point of u must be a local maximum (since $u_{x}=0$ implies $u_{x x}<0$). Therefore u has just one critical point, say x_{0}, which is a maximum. Get a formula for u by arguing as in (b). Then use the boundary condition to see that x_{0} had to be 0.]
3) Let's consider what becomes of Merton's optimal investment and consumption problem if there are two risky assets: one whose price satisfies $d p_{2}=\mu_{2} p_{2} d t+\sigma_{2} p_{2} d w_{2}$ and another whose price satisfies $d p_{3}=\mu_{3} p_{3} d t+\sigma_{3} p_{3} d w_{3}$. To keep things simple let's suppose w_{2} and w_{3} are independent Brownian motions. It is natural to assume $\mu_{2}>r$ and $\mu_{3}>r$ where r is the risk-free rate. (Why?) Let $\alpha_{2}(s)$ and $\alpha_{3}(s)$ be the proportions of the investor's total wealth invested in the risky assets at time s, so that $1-\alpha_{2}-\alpha_{3}$ is the proportion of wealth invested risk-free. Then the investor's wealth satisfies

$$
d y=\left(1-\alpha_{2}-\alpha_{3}\right) y r d s+\alpha_{2} y\left(\mu_{2} d s+\sigma_{2} d w_{2}\right)+\alpha_{3} y\left(\mu_{3} d s+\sigma_{3} d w_{3}\right) .
$$

(Be sure you understand this; but you need not explain it on your solution sheet.) Use the power-law utility: the value function is thus

$$
u(x, t)=\max _{\alpha_{2}, \alpha_{3}, \beta} E_{y(t)=x}\left[\int_{t}^{\tau} e^{-\rho s} \beta^{\gamma}(s) d s\right]
$$

where τ is the first time $y(s)=0$ if this occurs, or $\tau=T$ otherwise.
(a) Derive the HJB equation.
(b) What is the optimal investment policy (the optimal choice of α_{2} and α_{3})? What restriction do you need on the parameters to be sure $\alpha_{2}>0, \alpha_{3}>0$, and $\alpha_{2}+\alpha_{3}<1$?
(c) Find a formula for $u(x, t)$. [Hint: the nonlinear equation you have to solve is not really different from the one considered in Section 3.]
4) Problem 8 of Homework 2 was a special case of the deterministic "linear quadratic regulator" problem. Here is the analogous stochastic problem. The state is $y(s) \in R^{n}$, and the control is $\alpha(s) \in R^{n}$. There is no pointwise restriction on the possible value of $\alpha(s)$. The evolution law is

$$
d y=(A y+\alpha) d s+\epsilon d w,
$$

where w is a vector-valued Brownian motion (each component is a scalar-valued Brownian motion, and different components are independent). The initial condition is $y(t)=x$, and the goal is to minimize (among nonanticipating controls) the expected cost

$$
E_{y(t)=x}\left\{\int_{t}^{T}\left[|y(s)|^{2}+|\alpha(s)|^{2}\right] d s+|y(T)|^{2}\right\} .
$$

The interpretation is similar to the deterministic case: we prefer $y=0$ for $t<s<T$ and at the final time T, but we also prefer not to use too much control. The new element is that the state keeps getting jostled by the noise $\epsilon d w$.
(a) Find the associated HJB equation. Explain why the relation $\alpha(s)=-\frac{1}{2} \nabla u(y(s)$ should hold for the optimal control. (Same relation as in the deterministic case!)
(b) Look for a solution of the form

$$
u(x, t)=\langle K(t) x, x\rangle+q(t)
$$

where $K(t)$ is symmetric-matrix-valued and $q(t)$ is scalar-valued. Show that this u solves the HJB equation exactly if

$$
\frac{d K}{d t}=K^{2}-I-\left(K^{T} A+A^{T} K\right) \text { for } t<T, \quad K(T)=I
$$

(same as the deterministic case), and

$$
\frac{d q}{d t}=-\epsilon^{2} \operatorname{tr} K(t) \text { for } t<T, \quad q(T)=0
$$

(c) Show that $K(t)$ is positive definite. (Hint: its quadratic form is the value function of the deterministic control problem.) Conclude that $q(t)>0$ for $t<T$.
(d) Show by a verification argument that this u is indeed the value function of the control problem.
[Comment: in this setting the control law for the stochastic case, $\alpha(s)=-K(s) y(s)$, is the same as for the deterministic one. However the expected cost is higher due to the term $q(t)$.

