
PDE for Finance, Spring 2000 – Homework 3. Distributed 2/22/00, due 3/7/00.

1) Our geometric Example 2 gave |∇u| = 1 in D (with u = 0 at ∂D) as the HJB equation
associated with starting at a point x in some domain D, traveling with speed at most 1,
and arriving at ∂D as quickly as possible. Let’s consider what becomes of this problem
when we introduce a little noise. The state equation becomes

dy = α(s)ds + εdw, y(0) = x,

where α(s) is a (non-anticipating) control satisfying |α(s)| ≤ 1, y takes values in Rn, and
each component of w is an independent Brownian motion. Let τx,α denote the arrival time:

τx,α = time when y(s) first hits ∂D,

which is of course random. The goal is now to minimize the expected arrival time at ∂D, so
the value function is

u(x) = min
|α(s)|≤1

Ey(0)=x {τx,α} .

(a) Show, using an argument similar to that in the Section 3 notes, that u solves the PDE

1 − |∇u| + 1
2ε2∆u = 0 in D

with boundary condition u = 0 at ∂D.

(b) Your answer to (a) should suggest a specific feedback strategy for determining α(s)
in terms of y(s). What is it?

2) Let’s solve the differential equation from the last problem explicitly, for the special case
when D = [−1, 1]:

1 − |ux| + 1
2ε2uxx = 0 for −1 < x < 1

u = 0 at x = ±1.

(a) Assuming that the solution u is unique, show it satisfies u(x) = u(−x). Conclude that
ux = 0 and uxx < 0 at x = 0. Thus u has a maximum at x = 0.

(b) Notice that v = ux solves 1 − |v| + δvx = 0 with δ = 1
2ε2. Show that

v = −1 + e−x/δ for 0 < x < 1
v = +1 − ex/δ for −1 < x < 0.

Integrate once to find a formula for u.

(c) Verify that as ε → 0, this solution approaches 1 − |x|.
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[Comment: the assumption of uniqueness in part (a) is convenient, but it can be avoided.
Outline of how to do this: observe that any critical point of u must be a local maximum
(since ux = 0 implies uxx < 0). Therefore u has just one critical point, say x0, which is a
maximum. Get a formula for u by arguing as in (b). Then use the boundary condition to
see that x0 had to be 0.]

3) Let’s consider what becomes of Merton’s optimal investment and consumption problem
if there are two risky assets: one whose price satisfies dp2 = µ2p2dt + σ2p2dw2 and another
whose price satisfies dp3 = µ3p3dt + σ3p3dw3. To keep things simple let’s suppose w2 and
w3 are independent Brownian motions. It is natural to assume µ2 > r and µ3 > r where r
is the risk-free rate. (Why?) Let α2(s) and α3(s) be the proportions of the investor’s total
wealth invested in the risky assets at time s, so that 1−α2 −α3 is the proportion of wealth
invested risk-free. Then the investor’s wealth satisfies

dy = (1 − α2 − α3)yrds + α2y(µ2ds + σ2dw2) + α3y(µ3ds + σ3dw3).

(Be sure you understand this; but you need not explain it on your solution sheet.) Use the
power-law utility: the value function is thus

u(x, t) = max
α2,α3,β

Ey(t)=x

[∫ τ

t
e−ρsβγ(s) ds

]

where τ is the first time y(s) = 0 if this occurs, or τ = T otherwise.

(a) Derive the HJB equation.

(b) What is the optimal investment policy (the optimal choice of α2 and α3)? What
restriction do you need on the parameters to be sure α2 > 0, α3 > 0, and α2 +α3 < 1?

(c) Find a formula for u(x, t). [Hint: the nonlinear equation you have to solve is not really
different from the one considered in Section 3.]

4) Problem 8 of Homework 2 was a special case of the deterministic “linear quadratic
regulator” problem. Here is the analogous stochastic problem. The state is y(s) ∈ Rn, and
the control is α(s) ∈ Rn. There is no pointwise restriction on the possible value of α(s).
The evolution law is

dy = (Ay + α)ds + εdw,

where w is a vector-valued Brownian motion (each component is a scalar-valued Brownian
motion, and different components are independent). The initial condition is y(t) = x, and
the goal is to minimize (among nonanticipating controls) the expected cost

Ey(t)=x

{∫ T

t
[|y(s)|2 + |α(s)|2] ds + |y(T )|2

}
.

The interpretation is similar to the deterministic case: we prefer y = 0 for t < s < T and at
the final time T , but we also prefer not to use too much control. The new element is that
the state keeps getting jostled by the noise εdw.

2



(a) Find the associated HJB equation. Explain why the relation α(s) = −1
2∇u(y(s)

should hold for the optimal control. (Same relation as in the deterministic case!)

(b) Look for a solution of the form

u(x, t) = 〈K(t)x, x〉 + q(t)

where K(t) is symmetric-matrix-valued and q(t) is scalar-valued. Show that this u
solves the HJB equation exactly if

dK

dt
= K2 − I − (KT A + AT K) for t < T, K(T ) = I

(same as the deterministic case), and

dq

dt
= −ε2 tr K(t) for t < T, q(T ) = 0.

(c) Show that K(t) is positive definite. (Hint: its quadratic form is the value function of
the deterministic control problem.) Conclude that q(t) > 0 for t < T .

(d) Show by a verification argument that this u is indeed the value function of the control
problem.

[Comment: in this setting the control law for the stochastic case, α(s) = −K(s)y(s), is the
same as for the deterministic one. However the expected cost is higher due to the term
q(t).]
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