PDE for Finance, Spring 2000 - Homework 2 - distributed 2/8/00, due 2/22/00.

1) The Hopf-Lax solution formula solves the finite-horizon problem with state equation $d y / d s=\alpha$ and value function

$$
u(x, t)=\max _{\alpha}\left\{\int_{t}^{T} h(\alpha(s)) d s+g(y(T))\right\}
$$

with h concave. The key step was to show that an optimal trajectory has constant velocity. Give an alternative justification of this fact using Pontryagin's maximum principle.
2) Finite-horizon problems and minimal-arrival-time problems are closely related. Let's explore the relation, then use it to deduce a version of Pontryagin's maximum principle for the minimum-time problem.
(a) Let $u(x)$ be value function of the minimum-time problem with target E, state equation $d y / d s=f(y, \alpha)$, and admissible controls $\alpha(s) \in A$. Let $v(x, t)$ be the value function of the finite horizon problem with the same state equation, the same set of admissible controls, and objective

$$
\min _{\alpha} \int_{t}^{T} h_{E}(y(s)) d s
$$

where

$$
h_{E}(x)= \begin{cases}1 & \text { if } x \notin E \\ 0 & \text { if } x \in E .\end{cases}
$$

Show that $v(x, t)=\min \{T-t, u(x)\}$.
(b) Use part (a) to deduce a version of the maximum principle for the minimum-time problem.
(c) Consider the special case when $f(y, \alpha)=\alpha$ and A is the unit sphere in R^{n}. This is Example 2 from the Section 1 notes, and we know that $u(x)=\operatorname{dist}(x, E)$. What does your answer to (b) tell you about the optimal paths?
3) Example 3 in the Section 2 notes is a problem of optimal investment with proportional transaction costs. In formulating it we imposed a solvency constraint, but we permitted the investor to take a debt position in either instrument. Consider the analogous problem (same treatment of transaction costs) when investor is prohibited from taking a debt position in either instrument, i.e. he must keep $X(s) \geq 0$ and $Y(s) \geq 0$. The value function $u(x, y)$ is now defined just on the quadrant $x \geq 0, y \geq 0$.
(a) If the initial portfolio has $x=0$, a plausible strategy is to keep $x=0$ forever, transfering just enough funds from high-yield to money-market to cover your consumption. What formula does this suggest for $u(0, y)$? [Hint: this is related to problem 2 of HW1.]
(b) If the initial portfolio has $y=0$, a plausible strategy is to transfer funds immediately from money-market to high-yield so that (after the transfer) $x=h_{0} y$ for some constant h_{0}. Homogeneity tells us that $u(x, 0)=c_{0} x^{p}$ and $u\left(h_{0} y, y\right)=c_{1} y^{p}$ for some constants c_{0} and c_{1}. Assuming the proposed strategy is optimal, what is the relation between c_{0} and c_{1} ?
4) Example 3 assumes proportional transaction costs: of every dollar transfered, fraction μ goes to commissions and fraction $1-\mu$ arrives at the destination. What if transaction costs are not proportional? For example, what if the commission is 10% for transfers up to $\$ 1000$, but only 5% on the excess over $\$ 1000$. (Thus the commission on a transfer of $\$ 1500$ is $.1 \times 1000+.05 \times 500=125$.) Can you suggest a method for modeling this? [Hint: try making time discrete.]
5) We used the Hopf-Lax solution formula to see that the dynamic programming solution of $u_{t}+\frac{1}{2} u_{x}^{2}=0$ with $u=|x|$ at $t=T$ is $u(x, t)=(T-t)+|x|$. What happens when we change the final-time condition to

$$
u= \begin{cases}\frac{1}{\epsilon} x^{2} & \text { if }|x| \leq \epsilon / 2 \\ |x|-\frac{\epsilon}{4} & \text { if }|x| \geq \epsilon / 2\end{cases}
$$

at $t=T$. (This is a C^{1} approximation to $|x|$.) Does the resulting solution have continuous derivatives, or does its graph still have a sharp valley?
6) The Section 1 notes give a "minimum travel time" problem whose value function u solves $|\nabla u|=1$ for $x \notin E$ with $u=0$ at ∂E.
(a) Find a related dynamic programming problem whose value function (if smooth) should solve $|\nabla u|=1$ for $x \notin E$ with $u=g$ at ∂E, where g is a specified function on ∂E.
(b) Consider the 2D case, with E a planar region with smooth boundary ∂E. Describe the optimal controls and paths, if g is smooth and its derivative (with respect to arc-length) on E satisfies $\left|g^{\prime}\right|<1$.
(c) What changes if $\left|g^{\prime}\right|$ is bigger than 1 on some part of ∂E ?
7) Consider the following physically natural minimum-time problem (sometimes known as the "rocket-car problem"). A 1D particle with mass 1 has position x_{1} and velocity x_{2} at time 0 . You can control it by applying a force of magnitude less then or equal to 1 . Your goal is to bring it to rest at the origin as quickly as possible.
(a) Show we are considering a minimum-time problem with dynamics

$$
d y_{1} / d s=y_{2}, \quad d y_{2} / d s=\alpha(s)
$$

control $\alpha(s) \in A=\{|a| \leq 1\}$ and target set $\mathcal{T}=\{0,0\}$.
(b) Find the associated Hamilton-Jacobi-Bellman equation.

(c) Show that when $a=1$ the state moves along one of the parabolas $y_{1}=\frac{1}{2} y_{2}^{2}+c$. Similarly, if $a=-1$ the state moves along one of the parabolas $y_{1}=-\frac{1}{2} y_{2}^{2}+c$. From which starting points can the state move along one of these parabolas and arrive at $y_{1}=y_{2}=0$?
(d) Show the following "feedback control" drives any initial state $\left(x_{1}, x_{2}\right)$ to (0,0): take $\alpha(s)$ to be the following function of the state $\left(y_{1}(s), y_{2}(s)\right)$:

$$
\alpha=\left\{\begin{array}{cl}
-1 & \text { if } y_{1}>-\frac{1}{2} y_{2}\left|y_{2}\right| \\
1 & \text { if } y_{1}>0 \text { and } y_{1}=-\frac{1}{2} y_{2}\left|y_{2}\right| \\
1 & \text { if } y_{1}<-\frac{1}{2} y_{2}\left|y_{2}\right| \\
-1 & \text { if } y_{1}<0 \text { and } y_{1}=-\frac{1}{2} y_{2}\left|y_{2}\right|
\end{array}\right.
$$

(See the figure to visualize this; apologies for its crudeness.)
Show moreover that this control achieves value

$$
u(x)= \begin{cases}x_{2}+2\left(x_{1}+x_{2}^{2} / 2\right)^{1 / 2} & \text { if } x_{1} \geq-\frac{1}{2} x_{2}\left|x_{2}\right| \\ -x_{2}+2\left(-x_{1}+x_{2}^{2} / 2\right)^{1 / 2} & \text { if } x_{1} \leq-\frac{1}{2} x_{2}\left|x_{2}\right|\end{cases}
$$

(e) Show by a suitable verification argument that the control specified in (d) is optimal. (Hint: show, as a first step, that it is optimal if $\left(x_{1}, x_{2}\right)$ happens to lie on the curve $\left.x_{1}=-\frac{1}{2} x_{2}\left|x_{2}\right|.\right)$
8) This problem is a special case of the "linear-quadratic regulator" widely used in engineering applications. The state is $y(s) \in R^{n}$, and the control is $\alpha(s) \in R^{n}$. There is no pointwise restriction on the values of $\alpha(s)$. The evolution law is

$$
d y / d s=A y+\alpha, \quad y(t)=x,
$$

for some constant matrix A, and the goal is to minimize

$$
\int_{t}^{T}|y(s)|^{2}+|\alpha(s)|^{2} d s+|y(T)|^{2}
$$

(In words: we prefer $y=0$ along the trajectory and at the final time, but we also prefer not to use too much control.)
(a) What is the associated Hamilton-Jacobi-Bellman equation? Explain why we should expect the relation $\alpha(s)=-\frac{1}{2} \nabla u(y(s))$ to hold along optimal trajectories.
(b) Since the problem is quadratic, it's natural to guess that the value function $u(x, t)$ takes the form

$$
u(x, t)=\langle K(t) x, x\rangle
$$

for some symmetric $n \times n$ matrix-valued function $K(t)$. Show that this u solves the Hamilton-Jacobi-Bellman equation exactly if

$$
\frac{d K}{d t}=K^{2}-I-\left(K^{T} A+A^{T} K\right) \text { for } t<T, \quad K(T)=I
$$

where I is the $n \times n$ identity matrix. (Hint: two quadratic forms agree exactly if the associated symmetric matrices agree.)
(c) Show by a suitable verification argument that this u is indeed the value function of the control problem.

