
PDE for Finance, Spring 2000 – Homework 2 – distributed 2/8/00, due 2/22/00.

1) The Hopf-Lax solution formula solves the finite-horizon problem with state equation
dy/ds = α and value function

u(x, t) = max
α

{∫ T

t
h(α(s)) ds + g(y(T ))

}

with h concave. The key step was to show that an optimal trajectory has constant velocity.
Give an alternative justification of this fact using Pontryagin’s maximum principle.

2) Finite-horizon problems and minimal-arrival-time problems are closely related. Let’s
explore the relation, then use it to deduce a version of Pontryagin’s maximum principle for
the minimum-time problem.

(a) Let u(x) be value function of the minimum-time problem with target E, state equation
dy/ds = f(y, α), and admissible controls α(s) ∈ A. Let v(x, t) be the value function
of the finite horizon problem with the same state equation, the same set of admissible
controls, and objective

min
α

∫ T

t
hE(y(s)) ds

where

hE(x) =

{
1 if x /∈ E
0 if x ∈ E.

Show that v(x, t) = min{T − t, u(x)}.

(b) Use part (a) to deduce a version of the maximum principle for the minimum-time
problem.

(c) Consider the special case when f(y, α) = α and A is the unit sphere in Rn. This is
Example 2 from the Section 1 notes, and we know that u(x) = dist (x,E). What does
your answer to (b) tell you about the optimal paths?

3) Example 3 in the Section 2 notes is a problem of optimal investment with proportional
transaction costs. In formulating it we imposed a solvency constraint, but we permitted the
investor to take a debt position in either instrument. Consider the analogous problem (same
treatment of transaction costs) when investor is prohibited from taking a debt position in
either instrument, i.e. he must keep X(s) ≥ 0 and Y (s) ≥ 0. The value function u(x, y) is
now defined just on the quadrant x ≥ 0, y ≥ 0.

(a) If the initial portfolio has x = 0, a plausible strategy is to keep x = 0 forever, trans-
fering just enough funds from high-yield to money-market to cover your consumption.
What formula does this suggest for u(0, y)? [Hint: this is related to problem 2 of
HW1.]
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(b) If the initial portfolio has y = 0, a plausible strategy is to transfer funds immediately
from money-market to high-yield so that (after the transfer) x = h0y for some constant
h0. Homogeneity tells us that u(x, 0) = c0x

p and u(h0y, y) = c1y
p for some constants

c0 and c1. Assuming the proposed strategy is optimal, what is the relation between
c0 and c1?

4) Example 3 assumes proportional transaction costs: of every dollar transfered, fraction
µ goes to commissions and fraction 1 − µ arrives at the destination. What if transaction
costs are not proportional? For example, what if the commission is 10% for transfers up to
$1000, but only 5% on the excess over $1000. (Thus the commission on a transfer of $1500
is .1 × 1000 + .05 × 500 = 125.) Can you suggest a method for modeling this? [Hint: try
making time discrete.]

5) We used the Hopf-Lax solution formula to see that the dynamic programming solution
of ut + 1

2u2
x = 0 with u = |x| at t = T is u(x, t) = (T − t) + |x|. What happens when we

change the final-time condition to

u =

{
1
ε x

2 if |x| ≤ ε/2
|x| − ε

4 if |x| ≥ ε/2,

at t = T . (This is a C1 approximation to |x|.) Does the resulting solution have continuous
derivatives, or does its graph still have a sharp valley?

6) The Section 1 notes give a “minimum travel time” problem whose value function u solves
|∇u| = 1 for x /∈ E with u = 0 at ∂E.

(a) Find a related dynamic programming problem whose value function (if smooth) should
solve |∇u| = 1 for x /∈ E with u = g at ∂E, where g is a specified function on ∂E.

(b) Consider the 2D case, with E a planar region with smooth boundary ∂E. Describe
the optimal controls and paths, if g is smooth and its derivative (with respect to
arc-length) on E satisfies |g′| < 1.

(c) What changes if |g′| is bigger than 1 on some part of ∂E?

7) Consider the following physically natural minimum-time problem (sometimes known as
the “rocket-car problem”). A 1D particle with mass 1 has position x1 and velocity x2 at
time 0. You can control it by applying a force of magnitude less then or equal to 1. Your
goal is to bring it to rest at the origin as quickly as possible.

(a) Show we are considering a minimum-time problem with dynamics

dy1/ds = y2, dy2/ds = α(s),

control α(s) ∈ A = {|a| ≤ 1} and target set T = {0, 0}.

(b) Find the associated Hamilton-Jacobi-Bellman equation.
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y1

y2

α = 1

α = −1

(c) Show that when a = 1 the state moves along one of the parabolas y1 = 1
2y2

2 + c.
Similarly, if a = −1 the state moves along one of the parabolas y1 = −1

2y2
2 + c. From

which starting points can the state move along one of these parabolas and arrive at
y1 = y2 = 0?

(d) Show the following “feedback control” drives any initial state (x1, x2) to (0, 0): take
α(s) to be the following function of the state (y1(s), y2(s)):

α =




−1 if y1 > −1
2y2|y2|

1 if y1 > 0 and y1 = −1
2y2|y2|

1 if y1 < −1
2y2|y2|

−1 if y1 < 0 and y1 = −1
2y2|y2|

(See the figure to visualize this; apologies for its crudeness.)

Show moreover that this control achieves value

u(x) =

{
x2 + 2(x1 + x2

2/2)
1/2 if x1 ≥ −1

2x2|x2|
−x2 + 2(−x1 + x2

2/2)
1/2 if x1 ≤ −1

2x2|x2|

(e) Show by a suitable verification argument that the control specified in (d) is optimal.
(Hint: show, as a first step, that it is optimal if (x1, x2) happens to lie on the curve
x1 = −1

2x2|x2|.)

8) This problem is a special case of the “linear-quadratic regulator” widely used in engi-
neering applications. The state is y(s) ∈ Rn, and the control is α(s) ∈ Rn. There is no
pointwise restriction on the values of α(s). The evolution law is

dy/ds = Ay + α, y(t) = x,

for some constant matrix A, and the goal is to minimize∫ T

t
|y(s)|2 + |α(s)|2 ds + |y(T )|2.
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(In words: we prefer y = 0 along the trajectory and at the final time, but we also prefer
not to use too much control.)

(a) What is the associated Hamilton-Jacobi-Bellman equation? Explain why we should
expect the relation α(s) = −1

2∇u(y(s)) to hold along optimal trajectories.

(b) Since the problem is quadratic, it’s natural to guess that the value function u(x, t)
takes the form

u(x, t) = 〈K(t)x, x〉

for some symmetric n × n matrix-valued function K(t). Show that this u solves the
Hamilton-Jacobi-Bellman equation exactly if

dK

dt
= K2 − I − (KT A + AT K) for t < T , K(T ) = I

where I is the n × n identity matrix. (Hint: two quadratic forms agree exactly if the
associated symmetric matrices agree.)

(c) Show by a suitable verification argument that this u is indeed the value function of
the control problem.
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