PDE for Finance, Spring 2000 - Homework 1, due 2/8/00.

Note: Class was cancelled $1 / 25 / 00$ due to bad weather. This problem set deals mainly with material that will be discussed in class in the second lecture on $2 / 1 / 00$.

1) Consider the finite-horizon utility maximization problem with discount rate ρ. The dynamical law is thus

$$
d y / d s=f(y(s), \alpha(s)), \quad y(t)=x
$$

and the optimal utility discounted to time 0 is

$$
u(x, t)=\max _{\alpha \in A}\left\{\int_{t}^{T} e^{-\rho s} h(y(s), \alpha(s)) d s+e^{-\rho T} g(y(T))\right\} .
$$

It is often more convenient to consider, instead of u, the optimal utility discounted to time t; this is

$$
v(x, t)=e^{\rho t} u(x, t)=\max _{\alpha \in A}\left\{\int_{t}^{T} e^{-\rho(s-t)} h(y(s), \alpha(s)) d s+e^{-\rho(T-t)} g(y(T))\right\} .
$$

(a) Show (by a heuristic argument similar to those in the Section 1 notes) that v satisfies

$$
v_{t}-\rho v+H(x, \nabla v)=0
$$

with Hamiltonian

$$
H(x, p)=\max _{a \in A}\{f(x, a) \cdot p+h(x, a)\}
$$

and final-time data

$$
v(x, T)=g(x)
$$

(Notice that the PDE for v is autonomous, i.e. there is no explicit dependence on time.)
(b) Now consider the analogous infinite-horizon problem, with the same equation of state, and value function

$$
\bar{v}(x, t)=\max _{\alpha \in A} \int_{t}^{\infty} e^{-\rho(s-t)} h(y(s), \alpha(s)) d s
$$

Show (by an elementary comparison argument) that \bar{v} is independent of t, i.e. $\bar{v}=\bar{v}(x)$ is a function of x alone. Conclude using part (a) that if \bar{v} is finite, it solves the stationary PDE

$$
-\rho \bar{v}+H(x, \nabla \bar{v})=0 .
$$

2) Recall Example 1 of the Section 1 notes: the state equation is $d y / d s=r y-\alpha$ with $y(t)=x$, and the value function is

$$
u(x, t)=\max _{\alpha \geq 0} \int_{t}^{\tau} e^{-\rho s} h(\alpha(s)) d s
$$

with $h(a)=a^{\gamma}$ for some $0<\gamma<1$, and

$$
\tau=\left\{\begin{array}{l}
\text { first time when } y=0 \text { if this occurs before time } T \\
T \text { otherwise }
\end{array}\right.
$$

(a) We obtained a formula for $u(x, t)$ in the Section 1 notes, however our formula doesn't make sense when $\rho-r \gamma=0$. Find the correct formula in that case.
(b) Let's examine the infinite-horizon-limit $T \rightarrow \infty$. Following the lead of Problem 1 let us concentrate on $v(x, t)=e^{\rho t} u(x, t)=$ optimal utility discounted to time t. Show that

$$
\bar{v}(x)=\lim _{T \rightarrow \infty} v(x, t)= \begin{cases}G_{\infty} x^{\gamma} & \text { if } \rho-r \gamma>0 \\ \infty & \text { if } \rho-r \gamma \leq 0\end{cases}
$$

with $G_{\infty}=[(1-\gamma) /(\rho-r \gamma)]^{1-\gamma}$.
(c) Use the stationary PDE of Problem 1(b) (specialized to this example) to obtain the same result.
(d) What is the optimal consumption strategy, for the infinite-horizon version of this problem?
3) Consider the analogue of Example 1 with the power-law utility replaced by the logarithm: $h(a)=\ln a$. To avoid confusion let us write u_{γ} for the value function obtained in the notes using $h(a)=a^{\gamma}$, and $u_{\log }$ for the value function obtained using $h(a)=\ln a$. Recall that $u_{\gamma}(x, t)=g_{\gamma}(t) x^{\gamma}$ with

$$
g_{\gamma}(t)=e^{-\rho t}\left[\frac{1-\gamma}{\rho-r \gamma}\left(1-e^{-\frac{(\rho-r \gamma)(T-t)}{1-\gamma}}\right)\right]^{1-\gamma}
$$

(a) Show, by a direct comparison argument, that

$$
u_{\log }(\lambda x, t)=u_{\log }(x, t)+\frac{1}{\rho} e^{-\rho t}\left(1-e^{-\rho(T-t)}\right) \ln \lambda
$$

for any $\lambda>0$. Use this to conclude that

$$
u_{\log }(x, t)=g_{0}(t) \ln x+g_{1}(t)
$$

where $g_{0}(t)=\frac{1}{\rho} e^{-\rho t}\left(1-e^{-\rho(T-t)}\right)$ and g_{1} is an as-yet unspecified function of t alone.
(b) Pursue the following scheme for finding g_{1} : Consider the utility $h=\frac{1}{\gamma}\left(a^{\gamma}-1\right)$. Express its value function u_{h} in terms of u_{γ}. Now take the limit $\gamma \rightarrow 0$. Show this gives a result of the expected form, with

$$
g_{0}(t)=\left.g_{\gamma}(t)\right|_{\gamma=0}
$$

and

$$
g_{1}(t)=\left.\frac{d g_{\gamma}}{d \gamma}(t)\right|_{\gamma=0}
$$

(This leads to an explicit formula for g_{1} but it's messy; I'm not asking you to write it down.)
(c) Indicate how g_{0} and g_{1} could alternatively have been found by solving appropriate PDE's. (Hint: find the HJB equation associated with $h(a)=\ln a$, and show that the ansatz $u_{\log }=g_{0}(t) \ln x+g_{1}(t)$ leads to differential equations that determine g_{0} and g_{1}.)
4) Our Example 1 considers an investor who receives interest (at constant rate r) but no wages. Let's consider what happens if the investor also receives wages at constant rate w. The equation of state becomes

$$
d y / d s=r y+w-\alpha \quad \text { with } y(t)=x
$$

and the value function is

$$
u(x, t)=\max _{\alpha \geq 0} \int_{t}^{T} e^{-\rho s} h(\alpha(s)) d s
$$

with $h(a)=a^{\gamma}$ for some $0<\gamma<1$. Since the investor earns wages, we now permit $y(s)<0$, however we insist that the final-time wealth be nonnegative $(y(T) \geq 0)$.
(a) Which pairs (x, t) are acceptable? The strategy that maximizes $y(T)$ is clearly to consume nothing $(\alpha(s)=0$ for all $t<s<T)$. Show this results in $y(T) \geq 0$ exactly if

$$
x+\phi(t) w \geq 0
$$

where

$$
\phi(t)=\frac{1}{r}\left(1-e^{-r(T-t)}\right) .
$$

Notice for future reference that ϕ solves $\phi^{\prime}-r \phi+1=0$ with $\phi(T)=0$.
(b) Find the HJB equation that $u(x, t)$ should satisfy in its natural domain $\{(x, t)$: $x+\phi(t) w \geq 0\}$. Specify the boundary conditions when $t=T$ and where $x+\phi w=0$.
(c) Substitute into this HJB equation the ansatz

$$
v(x, t)=e^{-\rho t} G(t)(x+\phi(t) w)^{\gamma}
$$

Show v is a solution when G solves the familiar equation

$$
G_{t}+(r \gamma-\rho) G+(1-\gamma) G^{\gamma /(\gamma-1)}=0
$$

(the same equation we solved in Example 1). Deduce a formula for v.
(d) In view of (a), a more careful definition of the value function for this control problem is

$$
u(x, t)=\max _{\alpha \geq 0} \int_{t}^{\tau} e^{-\rho s} h(\alpha(s)) d s
$$

where

$$
\tau=\left\{\begin{array}{l}
\text { first time when } y(s)+\phi(s) w=0 \text { if this occurs before time } T \\
T \text { otherwise }
\end{array}\right.
$$

Use a verification argument to prove that the function v obtained in (c) is indeed the value function u defined this way.
5) [An example of nonexistence of an optimal control.] Consider the following control problem: the state is $y(s) \in R$ with $y(t)=x$; the control is $\alpha(s) \in R$; the dynamics is $d y / d t=\alpha$; and the goal is

$$
\operatorname{minimize} \int_{t}^{T} y^{2}(s)+\left(\alpha^{2}(s)-1\right)^{2} .
$$

The value function $u(x, t)$ is the value of this minimum.
(a) Show that when $x=0$ and $t<T$, the value is $u(0, t)=0$.
(b) Show that when $x=0$ and $t<T$ there is no optimal control $\alpha(s)$.
[The focus on $x=0$ is only because this case is most transparent; nonexistence occurs for other (x, t) as well. Food for thought: What is the Hamilton-JacobiBellman equation? Is there a modified goal leading to the same Hamiltonian and value function, but for which optimal controls exist?]

