
PDE for Finance Notes – Section 7
Notes by Robert V. Kohn, Courant Institute of Mathematical Sciences. For use only in
connection with the NYU course PDE for Finance, G63.2706, Spring 1999.

Applications to finance: optimal stopping and option pricing. These notes discuss
several topics, each a central application of stochastic pde methods to finance:

(a) When to sell an asset. We’ve seen that the expected final-time payoff, at a fixed
maturity time, is determined by solving a linear PDE. But what if the final time is not
fixed, but is rather a “stopping time” to be chosen optimally? We considered some
deterministic problems of this type in Section 3 and HW3. We’ll do a continuous-
time example here. It leads to a free boundary problem for the backward Kolmogorov
equation.

(b) European options, with and without transaction costs. The theory developed
by Black-Scholes-Merton determines a price for any European option by identifying
an equivalent replicating portfolio. However this theory ignores transaction costs, and
it requires the market to be complete. We’ll discuss how it can be embedded in a more
general framework that permits taking transaction costs into account and can be used
for almost any market model, whether or not it is complete.

(c) Risk-neutral pricing. We’ve noticed that the Black-Scholes PDE describes the
expected payoff of a European option – provided we take the “expected payoff” using a
suitable “risk-neutral” stochastic differential equation for the underlying asset prices.
We’ll explain this, discussing (well, really just stating) Girsanov’s theorem in the
process.

(d) American options. When viewed via risk-neutral pricing, pricing an American
option amounts to an optimal stopping problem. The price is therefore described by
a free boundary problem a lot like that of topic (a).

Concerning (a) we follow Oksendal, Examples 10.2.2 and 10.4.2. Concerning (b) we follow
the chapter by Soner in Viscosity Solutions and Applications, Lecture Notes in Math 1660,
Springer-Verlag, section 4. Discussions of topic (c) and (d) can be found in many places,
including Baxter-Rennie, Neftci, and Oksendal; our treatment is therefore very abbreviated.

The methods under discussion here are applicable in considerable generality – for markets
with many sources of randomness (described by vector-valued solutions of stochastic differ-
ential equations), and for non-constant interest rates, drifts, and volatilities. However for
simplicity we’ll focus on the simplest case when the interest rate, drift, and volatility are
constant.
Since today is the last lecture and this material is not reinforced by homework, the topics
covered here will not be on the final exam.

****************************
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When to sell an asset. This problem is familiar to any investor: when to sell a stock you
presently own? Keeping things simple (to permit a closed-form solution), we suppose the
stock price executes geometric brownian motion

dy = µyds+ σydw

with constant µ and σ. Assume a fixed commission a is payable at the time of sale, and
suppose the present value of future income is calculated using a constant discount rate r.
Then the time-0 value realized by sale at time s is

e−rs[y(s)− a].

Our task is to choose the time of sale optimally. The decision to sell may depend on the
stock price, and in principle on all information about the stock price history – but not on
knowledge of the future. Thus the sales time τ is random but non-anticipating, i.e. it is
a stopping time. We plan to use the method of dynamic programming, so it is natural to
formulate the problem with an arbitrary initial time and initial state (but with the objective
always discounted to time 0). Our goal is thus to find

u(x, t) = max
τ

Ey(t)=x

[
e−rτ (y(τ)− a)

]
(1)

where the maximization is over all stopping times.

It is natural to assume that µ < r, and we shall do so. If µ > r then the maximum value
of (1) is easily seen to be ∞; if µ = r then the maximum value (1) turns out to be xe−rt.
When µ ≥ r there is no optimal stopping time – a sequence of better and better stopping
times tends to ∞ instead of converging. (Exercise: prove the assertions in this paragraph.)

Our plan is a lot like the one we used for other optimal control problems: we shall guess,
using a combination of rigorous and heuristic arguments, the optimal stopping rule. Then
we’ll prove our guess is right by a suitable verification argument.

We naturally expect that
u(x, t) ≥ e−rt(x− a)

since one possible strategy is to sell immediately. Moreover it is optimal to sell immediately
(at time t) exactly if u = e−rt(x−a). By the principle of dynamic programming, we should
consider, at each moment s > t, whether to sell immediately or hold longer. Thus the
optimal stopping rule should have the form

sell when (y(s), s) leaves the set H

where H is the “hold” region

H = {(x, t) : u(x, t) > e−rt(x− a)}.

We claim that H is independent of t, and it really has the form

H = {(x, t) : (0 < x < h)} (2)
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for some “selling threshold” h. To see why H is independent of t, observe that

u(x, t) = e−rt max
τ

Ey(t)=x

[
e−r(τ−t)(y(τ)− a)

]
= e−rtũ(x)

where ũ is the optimal payoff discounted to the starting time (which is therefore independent
of the starting time). Thus u > e−rt(x− a) exactly if ũ > x− a. So the decision whether to
“sell immediately” or “hold longer” depends only on the initial stock price x. It’s natural to
expect that this dependence is through a sales threshold h, i.e. that the set where ũ > x−a
is an interval. Rather than prove this now, consider it a guess to be verified later.

If h were known then u(x, t) would be fully determined as the solution to an exit-time
problem similar to those discussed in Section 5. There we considered

v(x, t) = Ey(t)=x

[∫ τ

t
Ψ(y(s), s) ds+ Φ(y(τ), τ)

]
where τ was the exit time from a domain D. We saw that v solves

vt + Lv + Ψ = 0 for x ∈ D, v = Φ for x ∈ ∂D

where L is the infinitesimal generator of the SDE. (The discussion in Section 5 had a fixed
maturity time T , and set τ = T if the exit time was greater than T . However if the expected
exit time is finite then we can pass to the limit T → ∞. This is equivalent to solving an
elliptic boundary value problem for ũ, as will be clear presently.)

The special case of interest here is D = (0, h), Φ(y, s) = e−rs(y−a), Ψ = 0. Writing uh(x, t)
for the expected final cost, we deduce that

uht + µxuhx + 1
2σ

2x2uhxx = 0 for 0 < x < h

and
uh(x, t) = e−rt(x− a) at x = h.

(We do not impose a boundary condition at x = 0 because geometric Brownian motion
never reaches 0.)

Let’s find uh explicitly. We showed above that u(x, t) = e−rtũ(x), and the same argument
shows that uh(x, t) = e−rtũh(x). The PDE for ũh is evidently

−rũh + µxũhx + 1
2σ

2x2ũhxx = 0 for 0 < x < h

with
ũh = (x− a) at x = h.

The general solution of −rφ+ µxφx + 1
2σ

2x2φxx = 0 is

φ(x) = C1x
γ1 + C2x

γ2

where C1, C2 are arbitrary constants and

γi = σ−2
[

1
2σ

2 − µ±
√

(µ− 1
2σ

2)2 + 2rσ2

]
.
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We label the exponents so that γ2 < 0 < γ1. To determine ũh we must specify C1 and C2.
Since ũh should be bounded as x → 0 we have C2 = 0. The value of C1 is determined by
the boundary condition at x = h: evidently C1 = h−γ1(h − a). Thus the expected payoff
using sales threshold h is

uh(x, t) =

{
e−rt(h− a)

(
x
h

)γ1 if x < h

e−rt(x− a) if x > h.

Any sales threshold is permitted, of course, so we should optimize over h. One verifies by
direct calculation that the optimal threshold is

hopt =
aγ1

γ1 − 1

(notice that γ1 > 1 since µ < r). Summing up: the optimal policy is to sell when the
stock price reaches hopt, or immediately if the present price is greater than hopt; the value
achieved by this policy is

u(x, t) = max
h

uh(x, t) =

 e−rt
(
γ1−1
a

)γ1−1 (
x
γ1

)γ1
if x < hopt

e−rt(x− a) if x > hopt.
(3)

One can verify by direct calculation that u is C1. In other words, while for general h the
function uh has a discontinuous derivative at h, the optimal h is also the choice that makes
the derivative continuous there. This is not an accident: it is a general feature of optimal
stopping problems.

OK, we have surely found the optimal policy. But we did it by making some guesses.
The proof that our answer is right requires a verification argument. Our prior verification
arguments showed that the solution of a suitable Hamilton-Jacobi-Bellman equation gave
a one-sided bound on the value achieved by any strategy. We shall do something similar
here, but the HJB equation is replaced by a variational inequality.

Claim. Let L be the generator of y (Lφ = µxφx + 1
2σ

2x2φxx). Suppose there exists a
function v(x, t) and constant x0 such that

(a) v(x, t) ≥ e−rt(x− a) for all x > 0 and all t;

(b) vt + Lv ≤ 0 for all x > 0 and all t;

(c) v is C1 at x = x0 and smooth everywhere else.

(d) equality holds in (b) for 0 < x < x0 and in (a) for x > x0;

Then for any stopping time τ we have

v(x, t) ≥ Ey(t)=x

[
e−rτ (y(τ)− a)

]
for all x, t.
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Explanation. We argue as in Section 5: for any sufficiently differentiable function φ(x, t),

d[φ(y(s), s)] = (φs + Lφ)ds+ a term involving dw.

Taking φ = v(x, t), integrating from time t to the stopping time τ , then taking the expected
value, we get

Ey(t)=x [v(y(τ), τ)]− v(x, t) = Ey(t)=x

∫ τ

t
(vs + Lv)(y(s), s) ds

≤ 0 (4)

using (b). Therefore

v(x, t) ≥ Ey(t)=x [v(y(τ), τ)]
≥ Ey(t)=x

[
e−rτ (y(τ)− a)

]
(5)

using (a). Done!

We have glossed over some technical points (for example, if τ is unbounded we should use
this argument on τk = min{τ, k} then let k → ∞). More interesting: we appear not to
have made use of (c) and (d). But notice that we’ve applied Ito’s lemma to a function v
that isn’t smooth. If v were not C1 it would be hopeless: you can’t do second-order Taylor
expansion on a function that’s not at least piecewise C2. Under (c) and (d) the situation
is not so bad: the terms appearing in Ito’s lemma are uniformly bounded, though vxx is
discontinuous at x0. The discontinuity of vxx turns out to be a minor matter – one can
justify this application of Ito’s lemma (see Oksendal Theorem 10.4.1).

Examining the argument, one sees that it proves more than was stated in the claim. Namely:
if

τ∗ =

{
t if x ≥ x0

first time y(s) reaches x0 if x < x0

then equality holds in both (4) and (5), so v(x, t) is in fact the optimal value and τ∗ is the
optimal stopping time.

The point of all this, of course, is that the function u = maxh uh satisfies conditions (a)-(d)
with x0 = hopt. The only not-entirely-obvious point is that (a) holds for x > x0, i.e. that

φ = e−rt(x− a) satisfies vt + Lv ≤ 0 for x > x0.

This reduces to the assertion x0 ≥ (ra)/(r− µ), which follows from the explicit formula for
x0 = hopt.

The solution of the general optimal stopping problem is similar. The value function is
described by a variational inequality similar to (a)-(d). There is a “free boundary”: on one
side equality holds in (the analogue of) (a), on the other side equality holds in (the analogue
of) (b). The location of the free boundary determines the optimal stopping policy.

**************************

5



European options without transaction costs. This topic will be familiar to students
of mathematical finance. We continue to concentrate on the simplest case: a European
option on a single stock executing a geometric Brownian motion in a constant-interest-rate
environment. We’re really interested in two assets this time: a risk-free money-market
account, which earns interest at rate r,

dy0 = ry0dt,

and the stock, which evolves by

dy1 = µy1dt+ σy1dw. (6)

A European option with payoff g and maturity T provides its holder with a cash payment
of g(y1(T )) at the maturity date T .

The insight of Black-Scholes-Merton was that the payoff can be replicated by a self-financing
portfolio managed according to a certain trading strategy. Since the self-financing portfolio
is functionally equivalent to the option, the time-0 value of the option must be the same as
the initial endowment of the replicating portfolio.

What is a portfolio? Answer: a non-anticipating vector-valued function θ(t) = (θ0(t), θ1(t)),
giving the amount of each asset held. Its value at time t is

V (t) = θ(t) · y(t) = θ0(t)y0(t) + θ1(t)y1(t).

We say it is self-financing if
dV = θ0dy0 + θ1dy1.

This is a stochastic differential equation; it means the stochastic integral of the left hand
side equals the stochastic integral of the right hand side. Remembering the meaning of the
stochastic integral, this means

V (s′)− V (s) = lim
∆t→0

∑
i

θ0(ti)[y0(ti+1)− y0(ti)] + θ1(ti)[y1(ti+1)− y1(ti)]

where s = t0 < t1 < . . . < tN = s′. Briefly: the value of the portofolio changes — but only
because the values of the stock and money market accounts change during time intervals
during which the portfolio is held constant. The investor who maintains such a portfolio is
buying or selling stock every time θ0 and θ0 change – but in doing so he is neither putting
new money into the portfolio nor taking money out; the cost of any stock purchases and the
proceeds of any sales come from and go to the money market account, not the investor’s
pocket.

We claim that if u(x, t) solves the Black-Scholes partial differential equation

ut + rxux + 1
2σ

2x2uxx − ru = 0 for t < T , with final value u(x, T ) = g(x)

then there is a trading strategy determining a self-financing portfolio with initial value
V (0) = u(y1(0), 0) whose final value is g(y1(T )), no matter what the stock price does. This
claim shows that the time-0 value of the European option with payoff g and maturity T is
u(y1(0), 0).
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To justify our claim we need merely specify the trading strategy and check that it works.
Here’s the trading strategy: we set

θ1(t) =
∂u

∂x
(y1(t), t),

and we choose θ0(t) so that

u(y1(t), t) = θ0(t)y0(t) + θ1(t)y1(t).

This amounts of course to setting

θ0 =
1
y0

(u− xux)|x=y1(t) .

This strategy clearly has value V (t) = u(y1(t), t) at every time. To see it is self-financing,
notice first that

dV = d[u(y1(t), t)] = [ut + µxux + 1
2σ

2x2uxx]dt+ [σxux]dw

where the terms in brackets on the right are evaluated at x = y1(t). On the other hand

θ1dy1 = [µxux]dt+ [σxux]dw

evaluated at x = y1(t), and
θ0dy0 = [u− xux]rdt.

One verifies using the PDE for u that dV = θ0dy0 + θ1dy1. Thus the portfolio is self-
financing, as asserted. Its final value is u(y1(T ), T ) = g(y1(T )) since u = g at t = T . This
completes the proof of the claim.

If you never saw this argument before it undoubtedly looks mysterious. Slower, more moti-
vated treatments can be found in many sources, for example Neftci or Dewynne-Howison-
Wilmott.

**************************

European options in the presence of transaction costs. The Black-Scholes-Merton
theory rests on a miracle: the fact that any possible payoff g has a replicating portfolio.
This property, known as completeness of the market, extends to more complicated market
models – with nonconstant drift and volatility, for example – provided the number of stocks
under discussion is equal to the number of distinct sources of randomness. However the
Black-Scholes-Merton theory ignores transaction costs, and completeness is immediately
lost when we take such costs into account. Completeness can also be lost in other ways, e.g.
when the market has two distinct sources of randomness but just one risky asset that can be
purchased (example: a stock executing geometric Brownian motion and paying dividends
at a random rate).

What might a model with transaction costs look like? Section 1 presented a portfolio opti-
mization model with transaction costs, involving two risk-free assets (a high-yield account
and a money-market account). We can introduce modified state variables
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• Y0(t) = value of money-market holdings at time t

• Y1(t) = value of stock holdings at time t

and control variables

• α(t) ≥ 0 is the rate at funds are being removed from the money-market account to
buy stock

• β(t) ≥ 0 is rate at which stock is being sold, with the proceeds going into the money-
market account.

If transaction costs are proportional to the transactions themselves then the state variables
evolve by

dY0 = rY0dt− αdt+ [1− λ]βdt
dY1 = µY1dt+ σY1dw − βdt+ (1− λ)αdt

where λ gives the proportion of any transaction that’s lost to transaction costs.

Hodges and Neuberger proposed a scheme for pricing of options in such a marketplace
in a recent paper Review of Future Markets 8, 1989, 222-239. The theory was explored
further by Davis, Panas, and Zariphopoulou in SIAM J. Control Optim. 31, 1993, 470-493,
and by these and other authors in subsequent publications, and it remains an area of active
research. Rather than attempt to develop the theory in any generality, we explain (following
Soner) what it looks like when specialized to the transaction-free, Black-Scholes setting.

We could return to the Black-Scholes notation used above (holdings (θ0(t), θ1(t)) and prices
(y0(t), y1(t))) but it’s more traditional to work instead with the investor’s total wealth
V (t) = θ0(t)y0(t) + θ1(t)y1(t) as the state, and the proportion π0 of his wealth in money-
market as our control. (In terms of our prior notation, θ0y0 = π0V .) The proportion of
his wealth in stock is naturally π1 = 1− π0. We do not restrict π0 and π1 to be between 0
and 1, since borrowing and short-selling are permitted. The stochastic differential equation
satisfied by V is

dV = π0V rdt+ π1V (µdt+ σdw).

To simplify notation slightly (well, really out of laziness) we set r = 0 for the rest of this
discussion, and we relabel π1 = π. The state equation is thus

dV = πV (µdt+ σdw)

Suppose an agent (an investor, or a bank) has initial endowment z and is considering selling
a call option with payoff g and maturity T . Suppose moreover the agent’s utility of time-
T wealth is a specified function h. And suppose the agent doesn’t know portfolios are
replicatable (they wouldn’t be, when transaction costs are included). Then the agent may
reason as follows.
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First, suppose it does not issue an option, but just manages its present wealth optimally
till time T . This means maximizing the final-time utility

EV (t)=z [h(V (T ))]

over all (non-anticipating) choices of the control π. The associated value function

u(1)(z, t) = max
π

EV (t)=z [h(V (T ))]

solves the HJB equation
u

(1)
t + max

π
{Lπu(1)} = 0

with final value u(1) = h at t = T . Here Lπ is the infinitesimal generator with control π:

Lπφ(z, t) = πµzφz + 1
2π

2σ2z2φzz.

Next, suppose the agent were to sell the option. Still denoting by z its intial endowment
(which now includes any proceeds from selling the option), the agent’s policy is naturally
again to manage its wealth optimally till time T . At maturity it has to pay the obligation
g(y1(T )), so the expected final-time utility under this scenario is

EV (t)=z,y1(t)=x [h[V (T )− g(y1(T ))]]

and the stochastic control problem is

u(2)(z, x, t) = max
π

EV (t)=z,y1(t)=x [h[V (T )− g(y1(T ))]] .

The value function u(2) satisfies the HJB equation:

u
(2)
t + max

π
{Lπu(2) + σ2πzxu(2)

zx }+ Bu(2) = 0

with final value u(2)(z, x, T ) = h(z − g(x)), and with

Bφ(z, x, t) = µxφx + 1
2σ

2x2φxx.

OK. Now the proposal of Neuberger and Hodges. They propose that if the time-t stock
price is x, the agent would sell the option for price e only if

u(2)(z + e, x, t) ≥ u(1)(z, t).

In other words, this agent’s sales price e∗(z, x, t) is determined by

u(2)(z + e∗, x, t) = u(1)(z, t).

Notice that the sales price e∗ depends on the agent’s initial wealth z as well as on the stock
price x. The marketplace price of the option should be obtained by optimizing over z,
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bearing in mind that no agent desires negative final-time utility: it equals e∗(z∗, x, t) where
z∗ is such that u(1)(z∗, t) = 0.

The preceding framework can be used in any market, with or without transaction costs,
whether or not it is complete. To show the framework is reasonable, we make the following

Claim: In the Black-Scholes setting (with no transaction costs), the price e∗(z, x, t) is equal
to the Black-Scholes value u(x, t) for any z.

Explanation. One proof – the obvious one, but by far the more tedious one – is to use
the Hamilton-Jacobi-Bellman differential equations. Our claim asserts that

u(2)(z + u(x, t), t) = u(1)(z, t).

Both sides clearly have the same final value, and a tedious but straightforward calculation
(using the HJB equation characterizing u(2), the Black-Scholes equation characterizing u,
and chain rule) shows that u(2)(z+u(x, t), t) satisfies the HJB equation characterizing u(1).
It follows (from uniqueness of solutions of the HJB equations) that the two expressions
determine the same function. (See Soner for details.)

A better proof – easier and more conceptual – uses the key feature of the Black-Scholes
world: the existence of replicating portfolios. To see that u(2)(z + e, x, t) ≥ u(1)(z, t) when
e = u(x, t), consider any control (trading strategy) for the definition of u(1)(z, t). It starts
with endowment z at time t and reaches a certain expected final utility of wealth. We
associate with it a trading strategy for the definition of u(2)(z+e, x, t): the initial endowment
is z+e, and the portfolio consists of two sub-portfolios – one associated with u(1) with initial
endowment z, the other the Black-Scholes portfolio replicating g with initial endowment e.
Comparing the expected final payoffs shows that u(2)(z+ e, x, t) ≥ u(1)(z, t). The argument
proving the reverse inequality is essentially the same: given a trading strategy for the
definition of u(2)(z + e, x, t), we associate with it a trading strategy for u(1)(z, t) consisting
of two sub-portfolios: one associated with u(2) with initial endowment z + e, the other the
Black-Scholes portfolio replicating −g with initial endowment −e. Comparing the expected
final payoffs shows that u(2)(z + e, x, t) ≤ u(1)(z, t).

*******************

Risk-neutral pricing. Our derivation of the Black-Scholes differential equation was based
on identifying a replicating portfolio. That argument is efficient, and it captures the essence
of what makes Black-Scholes work (by specifying the optimal trading strategy as well as the
value). However it does not explain why the Black-Scholes PDE is the backward Kolmogorov
equation (well, really the PDE from the Feynman-Kac formula) for the expected discounted
final payoff

u(x, t) = ERN
y(t)=x

[
e−r(T−t)g(y(T ))

]
associated with the different stochastic PDE

dy = rydt+ σydw. (7)
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The superscript RN on ERN means “risk-neutral”, and it refers to the fact that we the
expected value is taken relative to the stochastic differential equation (7) rather than relative
to the original equation dy1 = µy1dt+ σy1dw.

This story really deserves an entire section of notes of its own. But here are the bare
essentials, specialized to the constant-drift, constant-volatility setting. Rather than work
with y0 and y1 solving (6), it is convenient to work with the normalized prices

ȳ0(t) = 1, ȳ1(t) = y1(t)/y0(t).

This amounts to a change of units: we choose to measure the stock price in inflated dollars
(using the risk-free rate r as the inflation rate) rather than in some other more arbitary
units. The state equation (6) gives

dȳ1 = (µ− r)ȳ1dt+ σȳ1dw. (8)

Martingales measures and the absence of arbitrage. A key requirement of any market model
is that it not admit arbitrage. Informally: there should be no investment strategy that (a)
requires no initial investment, (b) never loses money, and (c) makes money with positive
probability. More formally: there should be no self-financing portfolio such that (a) V (0) =
0, (b) V (T ) ≥ 0 almost surely, (c) V (T ) > 0 with positive probability, and (d) V (t) ≥ −K
almost surely, for some constant K. (This last condition is a technical but important one;
see Oksendal for discussion of it.)

If µ = r then we can easily show the absence of arbitrage using ordinary expectation.
Indeed, when µ = r we see from (8) that ȳ1 is a martingale (its stochastic differential
equation has only dw terms). The self-financing condition is

dV = θ̄1dȳ1 = θ̄1ȳ1σdw

so
E [V (T )] = V (0).

Thus if V (0) = 0 and V (T ) ≥ 0 we must have V (T ) = 0 with probability 1.

If µ 6= r we can use a similar strategy to rule out arbitrage, but we cannot use the ordinary
expectation. Instead we must use a weighted expectation. Let dP be the measure on path
space that’s implicit in our expectation notation:

E[f ] =
∫

paths
f dP.

By a weighted expectation we mean an expression of same form but with a weighted measure
dQ = MdP :

EQ[f ] =
∫

paths
f dQ =

∫
paths

fM dP.
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We wish to restrict our attention to Q’s that are themselves probability measures on path
space; the associated weights M satisfy M ≥ 0 and

E[M ] =
∫

paths
M dP = EQ[1] = 1.

Finally we want the sets of measure 0 under P and Q to be the same, so we need M > 0
almost surely.

Suppose we can find a weighted expectation operator EQ with all these properties, and one
more crucial one: that ȳ1 is a martingale relative to EQ, i.e.

EQ
[∫ T

0
α(s)dȳ1

]
= 0

for any nonanticipating α. Then we can prove the absence of arbitrage exactly as before.
The value of any self-financing portfolio satisfies

EQ [V (T )] = EQ [V (0)] = V (0).

So if V (0) = 0 and V (T ) ≥ 0 we must have V (T ) = 0 with probability 1.

This may seem a complicated method for proving absence of arbitrage. But actually it’s
quite natural, and in fact universal. The weighted expectation operators under discussion
are called “martingale measures” or “risk-neutral probabilities.” A market without arbi-
trage has at least one. If the market is complete it has only one. The proof of this statement
in a general, continuous-time setting is pretty technical. (Oksendal has a good treatment.)
The discrete-time version is an application of the duality theorem of linear programming.
The one-period version is in Section 3 of my Math Finance I lecture notes (available from
my web page).

The point of the last paragraph was to suggest that the M and Q we need should indeed
exist. For the Black-Scholes market we can say more: one can give an explicit formula for
M using Girsanov’s theorem. We’ll get to this in a moment.

Martingale measures and option pricing. We’ve shown that every contingent claim in the
Black-Scholes market is replicatable. In other words, for any payoff function g there’s a
self-financing portfolio (with initial value u = u(x, t), where x is the present stock price
y1(t), and with final value V (T ) = g(y1(T )) almost surely). We claim now that the initial
endowment has a simple expression in terms of the risk-neutral measure, namely

u(x, t) = EQ
[
e−r(T−t)g(y1(T ))

]
To explain this, we observe first that if θ = (θ0, θ1) determines a self-financing portfolio in
the y variables with value V (t) = θ(t) · y(t), then it also gives a self-financing portfolio in
the ȳ variables with value V̄ (t) = θ(t) · ȳ(t) = y−1

0 (t)V (t). Indeed,

dV̄ = d(y−1
0 V )

= −V y−2
0 dy0 + y−1

0 dV

= −(θ0y0 + θ1y1)y−2
0 dy0 + y−1

0 (θ0dy0 + θ1dy1)
= θ0dȳ1
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using dy0 = ry0dt and (8) for the last step. Applying this observation to the Black-Scholes
replicating portfolio, we get

EQ
[
V̄ (T )

]
= EQ

[
V̄ (t)

]
or equivalently

EQ
[
y−1

0 (T )V (T )
]

= EQ
[
y−1

0 (t)V (t)
]

or again
EQ

[
e−r(T−t)g(y1(T ))

]
= V (t) = u(x, t),

which is the desired relation.

Girsanov’s theorem and the risk-neutral dynamics. The remaining task is to ex-
plain why taking expectations relative to the risk-neutral probability Q is equivalent to
simply changing the stochastic differential equation from (6) to (7). The essential content
of Girsanov’s theorem is this: if α(s) is random but non-anticipating, we may choose

M(t) = e

(∫ t
0
α(s) dw−1

2

∫ t
0
α2(s) ds

)
.

It is a martingale, with E[Mt] = 1 for all t, so the associated measure Q is a probability
measure. Moreover the process w̃ defined by

dw̃ = −αds+ dw

is a Brownian motion relative to the probability Q. In particular its increments have mean
0 and variance ∆s – these means and variances being taken relative to the probability
measure Q rather than the original measure P . (There is a technical condition, known
as the Novikoff condition: α must be sufficiently well-behaved that E

[
exp(

∫ t
0 α

2 ds)
]
<∞.

This presents no problem in financial applications provided the volatility is bounded below.)

The essential meaning of this result is this: changing the measure on path space (from dP
to dQ = MdP with M given by Girsanov’s theorem) has the effect of changing the ds term
in the stochastic differential equation, since it replaces dw with dw̃ + αds.

There’s no need to compute further. We saw that the “ordinary” expectation is a martingale
measure for a special choice of drift – namely when µ = r. Girsanov’s theorem tells us we
can always arrange that the drift have this form – by changing the probability measure. The
Q that achieves this special drift is the risk-neutral measure. (A little algebra determines
the value of α required to change the drift, and Girsanov gives the associated M . But
we don’t really need M to compute the value of an option. Better to use the risk-neutral
stochastic differential equation directly.)

********************
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American options. An American option differs from a European one in the feature that
it can be exercised at any time. If the time of exercise were known, its value would be given
by the discounted expected final value (using the risk-neutral probability, or equivalently
solving the risk-neutral stochastic differential equation!). Since the time of exercise isn’t
known it must be determined optimally. We thus get a stopping time problem very much
like the one considered at the beginning of these notes:

u(x, t) = max
τ

Ey(t)=x

[
e−r(T−t)g(y(T ))

]
where y solves the risk-neutral SDE

dy = rydt+ σydw.

The value is again determined by a variational inequality, whose “free boundary” determines
the price at which the option should be exercised at any given time. The main difference
from our earlier example is that in this setting the free boundary depends on both space
and time.
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