
PDE for Finance Notes – Section 5 Addendum
Notes by Robert V. Kohn, Courant Institute of Mathematical Sciences. For use only in
connection with the NYU course PDE for Finance, G63.2706, Spring 1999.

More about stopping times. Then discussion of transition probabilities and the
forward Kolmogorov equation. My discussion of stopping times draws mainly from
Oksendal. My treatment of the forward Kolmogorov equation draws mainly from Fleming
and Rishel, but also from Jonathan Goodman’s lecture notes (Computational Methods in
Finance, Lecture 2: Diffusions and Diffusion Equations, available on the web). Arnold’s
book is good for further discussion of this topic. The discrete-time analogue of a diffusion
process is a Markov chain; see Jonathan Goodman’s lecture notes (Computational Methods
in Finance, Lecture 1: Duality and Dynamic Programming) for the analogous discussion in
that setting.

The material on “Elliptic boundary-value problems” at the end of Section 5 was skipped in
lecture. So was the material at the beginning of this addendum concerning stopping times.
These topics will naturally not be on the final exam.

****************************

More on the link to elliptic boundary-value problems. Our brief discussion of elliptic
boundary-value problems, at the end of Section 5, assumed that

τ = the first time y(s) exits from D

was finite (for almost every sample path) and moreover E[τ ] < ∞. How can we see that
this is true? We need some hypotheses, of course; let us discuss just the simplest case: D
is a bounded domain in Rn, and y(s) is multidimensional Brownian motion starting at x.
Recall that by Ito’s lemma, t→ φ(y(t)) satisfies

dφ = ∇φdw + 1
2∆φdt (1)

for any function φ. Let’s apply this with φ(y) = |y|2, integrating in time up to the stopping
time

τT (x) = min{τ(x), T} =

{
first time y(s) exits from D if less than T

T otherwise.

We get

E
[
|y(τT (x))|2

]
− |x|2 =

1
2

∫ τT (x)

0
∆φ(y(s))ds (2)

= nE [τT (x)]

since ∆φ = 2n. Now let T → ∞. The left hand side of (2) stays finite, since we’re
considering a bounded domain, and by definition y(τT (x)) is either in D or on the boundary
of D. Thus we conclude that

lim
T→∞

E [τT (x)] <∞.
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It follows (using the monotone convergence theorem, from real variables) that the exit time
τ = limT→∞ τT is almost surely finite, and E[τ ] <∞, for any starting point x ∈ D.

I can’t bear to leave this topic without using it to establish some properties of Brownian
motion.

Question: Consider Brownian motion in Rn, starting at a point x with |x| = b. Given
r < b, what is the probability that the path ever enters the ball of radius r centered at 0?

Answer: For n = 1, 2 this probability is 1. For n ≥ 3 it is (b/r)2−n.

Interpretation: Brownian motion is “recurrent” in dimensions 1 and 2 (it comes arbitrarily
close to any point, infinitely often, regardless of where it starts). However Brownian motion
is “transient” in dimensions 3 and higher (opposite of recurrent).

Consider first the case n ≥ 3. We use the stopping time τk = first exit time from the annulus

Dk = {r < |x| < 2kr}.

Since Dk is bounded, E[τk] < ∞ and we can integrate the stochastic differential equation
(1) up to time τk. Let’s do this with the special choice

φ(y) = |y|2−n.

This φ solves Laplace’s equation ∆φ = 0 away from its singularity at y = 0. (The singularity
does not bother us, since we only evaluate φ at points y(s) ∈ Dk and 0 does not belong to
Dk.) The analogue of (2) is

E
[
|y(τk)|2−n

]
− b2−n =

1
2

∫ τk

0
∆φ(y(s))ds = 0.

If pk is the probability that y leaves the annulus Dk at radius r, and qk = 1 − pk is the
probability that it leaves the annulus at radius 2kr, we have

r2−npk + (2kr)2−nqk = b2−n.

As k →∞ this gives pk → (b/r)2−n, as asserted.

The case n = 2 is treated similarly, using

φ(y) = log y,

which solves ∆φ = 0 in the plane, away from y = 0. Arguing as before we get

pk log(r) + qk log(2kr) = log b.

As k →∞ this gives qk → 0. So pk → 1, as asserted.

The case n = 1 is similar to n = 2, using φ(y) = |y|.

****************************
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Transition probabilities and the forward Kolmogorov equation. We’ve shown that
when the state evolves according to a stochastic differential equation

dyi = fi(y, t)dt+
∑
j

gij(y, t)dwj

the expected final position
u(x, t) = Ey(t)=x [Φ(y(T ))]

solves the backward Kolmogorov equation

ut +
∑
i

fi
∂u

∂xi
+

1
2

∑
i,j,k

gikgjk
∂2u

∂xi∂xj
= 0 for t < T , with u = Φ at t = T . (3)

We can write the backward Kolmogorov equation as

ut + Lu = 0 (4)

with

Lu =
∑
i

fi
∂u

∂xi
+ aij

∂2u

∂xi∂xj
, (5)

where aij = (1/2)
∑
k gikgjk = (1/2)(ggT )ij .

The solution of the stochastic differential equation is a Markov process, so it has a well-
defined transition probability

p(z, s;x, t) = probability of being at z at time s, given that it started at x at time t.

More precisely: p(·, s;x, t) is the probability density of the state at time s, given that it
started at x at time t. Of course p is only defined for s > t. To describe a Markov process,
p must satisfy the Chapman-Kolmogorov equation

p(z, s;x, t) =
∫
Rn
p(z1, s1;x, t)p(z, s; z1, s1) dz1

for any s1 satisfying t < s1 < s. Intuitively: the state can get from (x, t) to (z, s) by way
of being at various intermediate states z1 at a chosen intermediate time s1. The Chapman-
Kolmogorov equation calculates p(z, s;x, t) by adding up (integrating) the probabilities of
getting from (x, t) to (z, s) via (z1, s1), for all possible intermediate positions z1.

How should we visualize p? Consider first the case when y is multidimensional Brownian
motion. Then p(·, s;x, t) is the density of a Gaussian random variable with mean x and
variance s − t. The graph of z → p(z, s;x, t) always has volume 1 below it (since p is a
probability density); as s→∞ its maximum value tends to 0 (a Brownian particle diffuses
further and further away, on average, as time increases); as s→ t it becomes infinitely tall
and thin (at time s ≈ t the Brownian particle is very close to its initial position x). The
situation for a general stochastic differential equation is similar: p becomes infinitely tall and
thin, concentrating at z = x, as s→ t; and if ggT > 0 then the graph of p keeps spreading
as s → 0. Of course in the general case p does not describe a Gaussian distribution, and

3



there is no simple formula for the mean or variance – they are simply the mean and variance
of y(s).

If the stochastic differential equation does not involve time explicitly, then the transition
probability depends only on the “elapsed time”:

if dy = f(y)dt+ g(y)dw with f, g depending only on y, then p(z, s;x, t) = p(z, s− t;x, 0).

If the stochastic differential equation does not involve space explicitly, then the transition
probability depends only on the “relative position”:

if dy = f(t)dt+ g(t)dw with f, g depending only on t, then p(z, s;x, t) = p(z − x, s; 0, t).

The initial position of a Markov process need not be deterministic. Even if it is (e.g. if
y(0) = x is fixed), we may wish to consider a later time as the “initial time” (for example
in deriving the Hamilton-Jacobi-Bellman equation). The transition probability determines
the evolution of the spatial distribution, no matter what its initial value: if ρ0(x) is the
probability density of the state at time t then

ρ(z, s) =
∫
Rn
p(z, s;x, t)ρ0(x) dx (6)

gives the probability density (as a function of z) at any time s > t.

The crucial fact about the transition probability is this: it solves the forward Kolmogorov
equation in s and z:

−ps −
∑
i

∂

∂zi
(fi(z, s)p) +

1
2

∑
i,j,k

∂2

∂zi∂zj
(gik(z, s)gjk(z, s)p) = 0 for s > t, (7)

with initial condition
p = δx(z) at s = t.

We can write the forward Kolmogorov equation as

−ps + L∗p = 0 (8)

with

L∗p = −
∑
i

∂

∂zi
(fip) +

∑
i,j

∂2

∂zi∂zj
(aijp) . (9)

Here aij = (1/2)(ggT )ij just as before. The initial condition p = δx(z) encapsulates the
fact, already noted, that the graph of p(·, s;x, t) becomes infinitely tall and thin at x as s
decreases to t. The technical meaning is that∫

Rn
p(z, s;x, t)f(z) dz → f(x) as s decreases to t (10)

for any continuous f .
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Recall that if the initial state distribution is ρ0 then the evolving distribution is ρ(z, s) =∫
p(z, s;x, t)ρ0(x) dx. This function ρ(z, s) automatically solves the forward equation (just

bring the derivatives under the integral, and use that p solves it). The initial condition on
p is just what we need to have ρ(z, s)→ ρ0(z) as s→ t. (Demonstration: multiply (10) by
ρ0(x) and integrate in x to see that∫

ρ(z, s)f(z) dz =
∫
p(z, s;x, t)f(z)ρ0(x) dzdx→

∫
f(x)ρ0(x) dx

as s → t. Since this is true for every continuous f , we conclude that ρ(z, s) converges
[weakly] to ρ0(z) as s→ t.)

Please note that the forward Kolmogorov equation describes the probability distribution
by solving an initial-value problem, while the backward Kolmogorov equation describes
the expected final payoff by solving a final-value problem. Students familiar with pricing
options via binomial trees will find this familiar. The stock prices at various nodes of a tree
are determined by working forward in time; the option values at various nodes of a tree are
determined by working backward in time.

Notice that the forward and backward Kolmogorov equations are, in general, completely
different. There is one case, however, when they are closely related: for Brownian motion
the forward equation starting at t = 0 is

ps − 1
2∆p = 0 for s > 0

while the backward equation with final time T is

ut + 1
2∆u = 0 for t < T .

In this special case the backward equation is simply the forward equation with time reversed.
More careful statement: if u(x, t) solves the backward equation then ũ(z, s) = u(z, T − s)
solves the forward equation, and conversely.

Students with a background in physical modeling will be accustomed to equations of the
form vt = div (a(x)∇v). Neither the forward nor the backward Kolmogorov equation has
this form. Such equations are natural in physics, but not in problems from control theory
and stochastic differential equations.

Testing the plausibility of the forward equation. We will explain presently why the
forward equation holds. But first let’s get used to it by examining some consequences and
checking some special cases. Let ρ0(x) be the probability density of the state at time 0, and
and consider

ρ(z, s) =
∫
p(z, s;x, 0)ρ0(x) dx

for s > 0. It gives the probability density of the state at time s.

Checking the integral. Since ρ is a probability density we expect that
∫
ρ(z, s) dz = 1 for all

s. In fact, from the forward equation
d

ds

∫
ρ dz =

∫
ρs dz

=
∫
L∗ρ dz

= 0
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since each term of L∗ρ is a perfect derivative.

If the stochastic differential equation has no drift then the expected position is independent
of time. In general, E[y(s)] − E[y(0)] =

∫ s
0 f(y(r), r) dr since the expected value of the

integral dw vanishes. Thus when f = 0 the expected position E[y(s)] is constant. Let’s
prove this again using the forward equation:

d

ds
(expected position) =

d

ds

∫
zρ(z, s) dz

=
∫
zρs(z, s) dz

=
∫
zL∗ρ(z, s) dz

= 0 when f = 0.

The last step is the result of integration by parts; for example, if y is scalar valued (dy =
g(y, t)dw) we have ∫

zL∗ρ dz = 1
2

∫
z
(
g2ρ

)
zz
dz

= −1
2

∫ (
g2ρ

)
z
dz

= 0.

The special case f = constant, g = 0. If g = 0 then we’re studying a deterministic motion.
If in addition f = constant then the solution is explicit and very simple: y(t) = y(0) + ft.
Clearly

Prob of being at z at time s = Prob of being at z − fs at time 0,

whence
ρ(z, s) = ρ0(z − fs).

In particular, ρs + f ·∇ρ = 0, which agrees with the forward equation (since f is constant).

Biting the bullet. Enough playing around; let’s explain why the forward equation holds.
The first main ingredient is the observation that

Ey(t)=x [Φ(y(T ))] =
∫

Φ(z)p(z, T ;x, t) dz. (11)

We know how to determine the left hand side (by solving the backward equation, with final
value Φ at t = T ). This relation determines the integral of p(·, T ;x, t) against any function
Φ, for any value of x, t, T . This is a lot of information about p – in fact, it fully determines
p. Our task is to make this algorithmic, i.e. to explain how p can actually be computed.
(The answer, of course, is to solve the forward equation in z and s.)
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The second main ingredient is the relation between L and L∗. Briefly: L∗ is the adjoint of
L in the L2 inner product. Explaining this: recall from linear algebra that if A is a linear
operator on an inner-product space, then its adjoint A∗ is defined by

〈Ax, y〉 = 〈x,A∗y〉.

When working in Rn we can represent A by a matrix, and A∗ is represented by the transpose
AT . The situation is similar here, but our inner product space consists of all (square-
integrable, scalar-valued) functions on Rn, with inner product

〈v, w〉 =
∫
Rn
v(x)w(x) dx.

We claim that
〈Lv, w〉 = 〈v,L∗w〉. (12)

When y is scalar-valued our claim says that∫
R

(
fvx + 1

2g
2vxx

)
w dx =

∫
R
v
(
−(fw)x + 1

2(g2w)xx
)
dx.

This is a consequence of integration by parts. For example, the first term on the left equals
the first term on the right since∫

R
[fw]vx dx = −

∫
R

[fw]xv dx.

The second term on each side matches similarly, integrating by parts twice. Notice that f
and g can depend on time as well as space; it doesn’t change the argument. The proof of
(12) when y is vector valued is essentially the same as the scalar case.

The third main ingredient is hiding in our derivation of the backward equation. We know
from (1) that

Ey(t)=x [φ(y(T ), T )]− φ(x, t) = Ey(t)=x

[∫ T

t
(φs + Lφ)(y(s), s) ds

]
(13)

for any function φ(y, s). Our main use of this relation up to now was to choose φ so that
the right hand side vanished, i.e. to choose φ to solve the backward equation. But we don’t
have to make such a restrictive choice: relation (13) holds for any φ.

Let’s put these ingredients together. Rewriting (13) using the transition probabilities gives∫
Rn
φ(z, T )p(z, T ;x, t) dz − φ(x, t) =

∫ T

t

∫
Rn

(φs + Lφ)(z, s)p(z, s;x, t) dzds. (14)

Using (12) and doing the obvious integration by parts in time, the right hand side becomes∫ T

t

∫
Rn
−φps + φL∗p dzds+

∫
Rn
φ(z, s)p(z, s;x, t) dz

∣∣∣∣s=T
s=t

. (15)

7



This is true for all φ. Since the left hand side of (14) involves only the initial and final times
(t and T ) we conclude that

−ps + L∗p = 0.

(Rough explanation: choose φ(z, s) = 0 so that φ = −ps + L∗p for t < s < T but φ = 0 at
s = t and s = T .) Therefore (14)-(15) reduce to∫

Rn
φ(z, t)p(z, t;x, t) dz = φ(x, t)

for all φ, which is what we mean by the initial condition “p = δx when s = t”. Done!

The argument is simple; but maybe it’s hard to encompass. To recapitulate its essence,
let’s give a new proof (using the forward equation) of the fact (known via Ito calculus) that

u solves the backward equation =⇒ d

ds
E [u(y(s), s)] = 0.

In fact: if ρ(z, s) is the probability distribution of the state at time s,

d

ds
E [u(y(s), s)] =

d

ds

∫
u(z, s)ρ(z, s) dz

=
∫
usρ+ uρs dz

=
∫
usρ+ uL∗ρ dz

=
∫
usρ+ (Lu)ρ dz

= 0

using in the last step our hypothesis that u solves the backward equation.

Boundary value problems. The preceding discussion concerned the backward and for-
ward Kolmogorov equations in all space. We also considered the backward Kolmogorov
equation in a bounded domain. Let’s consider just the specific case when the boundary
condition at ∂D is u = 0:

ut + Lu = 0 for x ∈ D, t < T
u(x, T ) = φ(x) at t = T
u(x, t) = 0 for x ∈ ∂D.

We know that
u(x, t) = Ey(t)=x [Φ(y(τ), τ)]

where τ = τ(x) is the exit time from D (or T , if the path doesn’t exit by time T ) and

Φ = 0 for x ∈ ∂D; Φ = φ at the final time T .

The formula for u can be written as

u(x, t) =
∫
Rn
φ(z)q(z, T ;x, t) dz
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where
q(z, s;x, t) = probability that the state arrives at z at time s,
starting from x at time t, without hitting ∂D first.

The function q(z, s;x, t) solves the forward Kolmogorov equation for z ∈ D and s > t, with
boundary condition q = 0 for z ∈ ∂D, and initial condition q = δx. The justification is very
much like the argument given above for Rn.

One thing changes significantly when we work in a bounded domain:
∫
D q(z, s;x, t) dz < 1.

The reason is that q gives the probability of arriving at z at time s without hitting the
boundary first. Thus

1−
∫
D
q(z, s;x, t) dz = prob of hitting ∂D by time s, starting from x at time t.

Evidently
∫
q(z, s;x, t) dz is decreasing in time. Let’s check this for Brownian motion, for

which qs − 1
2∆q = 0. We have

d

ds

∫
D
q(z, s;x, t) dz =

∫
D
qs dz

= 1
2

∫
D

∆q dz

= 1
2

∫
∂D

∂q

∂n
≤ 0.

The inequality in the last step is a consequence of the maximum principle (to be discussed
in Section 6): since q = 0 at ∂D and q ≥ 0 in D we have ∂q/∂n ≤ 0 at ∂D, where n is
the outward unit normal. (In fact ∂q/∂n < 0; this is a “strong version” of the maximum
principle.)
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