
PDE for Finance Notes – Section 5
Notes by Robert V. Kohn, Courant Institute of Mathematical Sciences. For use only in
connection with the NYU course PDE for Finance, G63.2706, Spring 1999.

Reminders: No lecture March 31 [Passover]. Last lecture April 28. There will be an
in-class final exam on May 5.

More on stochastic differential equations; then the link to partial differential
equations. We discuss some some specific stochastic differential equations that are relevant
to finance. This provides, among other things, practice using Ito’s lemma. Then we develop
the link with PDE, specifically the backward Kolmogorov equation and the Feynman-Kac
formula. These explain, for example, the equivalence of the two basic formulas for the
value of a European option – (a) as the expected discounted payoff (relative to the the
risk-neutral probability), and (b) as the solution of the Black-Scholes partial differential
equation. Mainly I’ll be drawing from Chapter 5 of Fleming and Rishel, with supplementary
material from Lamberton and Lapeyre and Oksendal.

Two excellent books have come to my attention. Basic stochastic processes by Zdzislaw
Brzezniak and Tomasz Zastawniak (Springer-Verlag, new) discusses conditional expecta-
tions, martingales, and the Ito calculus starting at a very basic level with lots of exercises;
it should be accessible to all students in this class. Stochastic differential equations by Bernt
Oksendal (Springer-Verlag, 5th edition, 1998, $34.95 paperback) is more difficult and more
comprehensive but also excellent. It’s about at the level of Arnold’s book, but with sub-
stantial emphasis on applications to finance. Brzezniak and Zastawniak is in the Courant
library (not on reserve); Oksendal is in the Courant library (on reserve). Oksendal recently
went out of stock at Springer, but will be back in stock within a couple of weeks I’m told.

****************************

Stochastic differential equations. We’ve been discussing stochastic differential equa-
tions of the form

dy = f(y, t)dt+ g(y, t)dw (1)

where w is brownian motion. In the vector-valued case this means

dyi = fi(y, t)dt+
∑
j

gij(y, t)dwj

where each component of w is an independent Brownian motion. When considering optimal
control, it is natural to assume the coefficients f and g depend not only on y and t but also
on some (nonanticipating) control α(t). Here we’ll concentrate on the case when there is
no such dependence, i.e. f and g are functions of y and t alone. (However some of what we
do extends to the case when f and g are random but nonanticipating.)

We interpret (1) as meaning

y(t1)− y(t0) =
∫ t1

t0
f(y(s), s) ds+

∫ t1

t0
g(y(s), s) dw.
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Of course some conditions are needed on f and g for this to make sense. In particular:
we need E[g2(y(s), s)] to be bounded (or at least square-integrable) as a function of s.
This condition is natural, since the theory of stochastic integrals is an L2-based theory
(the stochastic integral is the limit, in the mean-square sense, of certain sums). Following
our usual custom of glossing over technical details, we shall assume such conditions without
explicitly mentioning them in what follows. Careful statements of most results can be found
in Fleming and Rishel.

We already discussed the fact that integrals “dw” have mean value 0:

E

[∫ t1

t0
g(y(s), s) dw

]
= 0.

We’ll also need this formula for the variance:

E

[(∫ t1

t0
g(y(s), s) dw

)2
]

=
∫ t1

t0
E[g2(y(s), s)] ds.

This is easy to see from the approximation of the stochastic integral as a sum: the square
of the stochastic integral is approximately(

N−1∑
i=1

g(y(si), si)[w(si+1)− w(si)]

)N−1∑
j=1

g(y(sj), sj)[w(sj+1)− w(sj)]


=

N−1∑
i,j=1

g(y(si), si)g(y(sj), sj)[w(si+1)− w(si)][w(sj+1)− w(sj)] .

For i 6= j the expected value of the i, jth term is 0 (for example, if i < j then [w(sj+1)−w(sj)]
has mean value 0 and is independent of g(y(si), si), g(y(sj), sj), and [w(si+1)−w(si)]). For
i = j the expected value of the i, jth term is E[g2(y(si), si)][si+1 − si]. So the expected
value of the squared stochastic integral is approximately

N−1∑
i=1

E[g2(y(si), si)][si+1 − si],

and passing to the limit ∆s→ 0 gives the desired assertion.

Let’s practice using Ito’s lemma by doing a few interesting things with it.

Redoing an example from Section 4. We showed that∫ t1

t0
w dw = 1

2(w2(t1)− w2(t0))− 1
2(t1 − t0)

by directly calculating the stochastic integral as a limit of sums. Ito’s lemma gives a much
easier proof of the same result: applying it to φ(w) = w2 gives

d(w2) = 2wdw + dwdw = 2wdw + dt
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which means w2(t1)− w2(t0) = 2
∫ t1
t0
w dw + (t1 − t0).

Log-normal dynamics. Suppose

dy = µ(t)ydt+ σ(t)ydw (2)

where µ(t) and σ(t) are (deterministic) functions of time. What stochastic differential
equation describes log y? Ito’s lemma gives

d(log y) = y−1dy − 1
2y
−2dydy

= µ(t)dt+ σ(t)dw − 1
2σ

2(t)dt.

Remembering that y(t) = elog y(t), we see that

y(t1) = y(t0)e
∫ t1
t0

(µ−σ2/2)ds+
∫ t1
t0
σdw

.

In particular, if µ and σ are constant in time we get

y(t1) = y(t0)e(µ−σ2/2)(t1−t0)+σ(w(t1)−w(t0)).

Stochastic stability. Consider once more the solution of (2). It’s natural to expect that if
µ is negative and σ is not too large then y should tend (in some average sense) to 0. This
can be seen directly from the solution formula just derived. But an alternative, instructive
approach is to consider the second moment ρ(t) = E[y2(t)]. From Ito’s formula,

d(y2) = 2ydy + dydy = 2y(µydt+ σydw) + σ2y2dt.

Taking the expectation, we find that

E[y2(t1)]− E[y2(t0)] =
∫ t1

t0
(2µ+ σ)E[y2]ds

or in other words
dρ/dt = (2µ+ σ)ρ.

Thus ρ = E[y2] can be calculated by solving this deterministic ODE. If the solution tends
to 0 as t → ∞ then we conclude that y tends to zero in the mean-square sense. When µ
and σ are constant this happens exactly when 2µ+σ < 0. When they are functions of time,
the condition 2µ(t) + σ(t) ≤ −c is sufficient (with c > 0) since it gives dρ/dt ≤ −cρ.

An example related to Girsanov’s theorem. In financial terms, Girsanov’s theorem gives the
relation between the “subjective” and “risk-neutral” price processes. We’ll discuss it later,
and when we do so the following fact will have a natural interpretation:

E

[
e

∫ t1
t0
γ(s)dw−1

2γ
2(s)ds

]
= 1.

In fact, this is the value of ez, where

dz = −1
2γ

2(t)dt+ γ(t)dw, z(t0) = 0.
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Ito’s lemma gives
d(ez) = ezdz + 1

2e
zdzdz = ezγdw.

So
ez(t1) − ez(t0) =

∫ t1

t0
ezγdw.

The right hand side has mean value zero, so

E[ez(t1)] = E[ez(t0)] = 1.

Notice the close relation with the previous examples: all we’ve really done is identify the
conditions under which µ = 0 in (2).

The Ornstein-Uhlenbeck process. You should have learned in Calculus that the deterministic
differential equation dy/dt+Ay = f can be solved explicitly. Just multiply by eAt to see that
d(eAty)/dt = eAtf then integrate both sides in time. So it’s natural to expect that linear
stochastic differential equations can also be solved explicitly. We focus on one important
example: the “Ornstein-Uhlenbeck process,” which solves

dy = −cydt+ σdw, y(0) = x

with c and σ constant. (This is not a special case of (2), because the “dw” term is not
proportional to y.) Ito’s lemma gives

d(ecty) = cectydt+ ectdy = ectσdw

so
ecty(t)− x = σ

∫ t

0
ecsdw,

or in other words
y(t) = e−ctx+ σ

∫ t

0
ec(s−t)dw(s).

Now observe that y(t) is a Gaussian random variable – because when we approximate the
stochastic integral as a sum, the sum is a linear combination of Gaussian random variables.
(We use here that a sum of Gaussian random variables is Gaussian; also that a limit of
Gaussian random variables is Gaussian.) So y(t) is entirely described by its mean and
variance. They are easy to calculate: the mean is

E[y(t)] = e−ctx

since the “dw” integral has expected value 0. The variance is

E
[
(y(t)− E[y(t)])2

]
= σ2E

[(∫ t

0
ec(s−t)dw(s)

)2
]

= σ2
∫ t

0
e2c(s−t)ds

= σ2 1− e−2ct

2c
.
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We digress to discuss the relevance of the Ornstein-Uhlenbeck process. One of the simplest
interest-rate models in common use is that of Vasicek, which supposes that the (short-term)
interest rate r(t) satisfies

dr = a(b− r)dt+ σdw

with a, b, and σ constant. Interpretation: r tends to revert to some long-term average value
b, but noise keeps perturbing it away from this value. Clearly y = r − b is an Ornstein-
Uhlenbeck process, since dy = −aydt+ σdw. Notice that r(t) has a positive probability of
being negative (since it is a Gaussian random variable); this is a reminder that the Vasicek
model is not very realistic. Even so, its exact solution formulas provide helpful intuition.

Historically, the Ornstein-Uhlenbeck process was introduced by physicists Ornstein and
Uhlenbeck, who believed that a diffusing particle had brownian acceleration not brownian
velocity. Their idea was that the position x(t) of the particle at time t should satisfy

dx = vdt

εdv = −vdt+ dw

with ε > 0 small. As ε → 0, the resulting xε(t) converges to a brownian motion process.
Formally: when ε = 0 we recover 0 = −vdt + dw so that dx = (dw/dt)dt = dw. Honestly:
we claim that |xε(t) − w(t)| converges to 0 (uniformly in t) as ε → 0. In fact, writing the
equations for the Ornstein-Uhlenbeck process as

dxε = vεdt

dw = vεdt+ εdvε

then subtracting, we see that
d(xε − w) = εdvε.

Now use our explicit solution formula for the Ornstein Uhlenbeck process to represent vε in
terms of stochastic integrals, ultimately concluding that εvε(t) → 0 as ε → 0. (Details left
to the reader.)

**************

The link to PDE. We’ve already seen a link between stochastic differential equations and
PDE, in our discussion of optimal control. Our present goal is a little different, though the
methods we’ll use to attain it are closely related. Technical terms: we’ll be discussing the
backward Kolmogorov equation associated with a diffusion process, and the Feynman-Kac
formula.

If you know a little finance, you know that the value of a European option can be determined
in two different ways: (a) as the expected discounted value of the payoff (with respect to
the risk-neutral probability), and (b) as the solution of the Black-Scholes partial differential
equation. The backward Kolmogorov equation and the Feynman-Kac formula explain why
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these two representations are equivalent. (In other words, they give a means of passing
from one to the other.) However we will not assume any specific familiarity with finance in
what follows.

The backward Kolmogorov equation. Here’s the most basic version. Suppose y(t)
solves the scalar stochastic differential equation

dy = f(y, t)dt+ g(y, t)dw,

and let
u(x, t) = Ey(t)=x [Φ(y(T ))]

be the expected value of some payoff Φ at maturity time T > t, given that y(t) = x. Then
u solves

ut + f(x, t)ux + 1
2g

2(x, t)uxx = 0 for t < T , with u(x, T ) = Φ(x). (3)

Sounds familiar, right? It’s just like our discussion of stochastic control – except that there
is no control, hence no need to maximize over anything.

This is a special case of arguments we’ve done before. Let’s review the explanation anyway.
For any function φ(y, t), Ito’s lemma gives

d(φ(y(t), t)) = φydy + 1
2φyydydy + φtdt

= (φt + fφy + 1
2g

2φyy)dt+ gφydw.

Choosing φ = u, the solution of (3), we get

u(y(T ), T )− u(y(t), t) =
∫ T

t
(φt + fφy + 1

2g
2φyy)dt+

∫ T

t
gφydw.

Taking the expected value and using the PDE gives

Ey(t)=x [Φ(y(T ))]− u(x, t) = 0

which is precisely our assertion.

That was the simplest case. It can be jazzed up in many ways. We discuss some of them:

Vector-valued diffusion. Suppose y solves a vector-valued stochastic differential equation

dyi = fi(y, t)dt+
∑
j

gij(y, t)dwj ,

where each component of w is an independent Brownian motion. Then

u(x, t) = Ey(t)=x [Φ(y(T ))]

solves
ut + Lu = 0 for t < T , with u(x, T ) = Φ(x),
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where L is the differential operator

Lu(x, t) =
∑
i

fi
∂u

∂xi
+ 1

2

∑
i,j,k

gikgjk
∂2u

∂xi∂xj
.

The justification is just as in the scalar case, using the multidimensional version of Ito’s
lemma. The operator L is called the “infinitesimal generator” of the diffusion process y(t).

The Feynman-Kac formula. We discuss the scalar case first, for clarity. Consider as above
the solution of

dy = f(y, t)dt+ g(y, t)dw

but suppose we are interested in a suitably “discounted” final-time payoff of the form:

u(x, t) = Ey(t)=x

[
e−
∫ T
t
b(y(s))dsΦ(y(T ))

]
(4)

for some specified function b(y). Then u solves

ut + f(x, t)ux + 1
2g

2(x, t)uxx − b(x)u = 0 (5)

instead of (3). (Its final-time condition is unchanged: u(x, T ) = Φ(x).) If you know some
finance you’ll recognize that when y is log-normal and b is the interest rate, (5) is precisely
the Black-Scholes partial differential equation.

To explain (5), we must calculate the stochastic differential d[z1(s)φ(y(s), s)] where z1(s) =
e−
∫ s
t
b(y(r))dr. The multidimensional version of Ito’s lemma gives

d[z1(s)z2(s)] = z1dz2 + z2dz1 + dz1dz2.

We apply this with z1 as defined above and z2(s) = φ(y(s), s). Ito’s lemma (or ordinary
differentiation) gives

dz1(s) = −z1b(y(s))ds

and we’re already familiar with the fact that

dz2(s) = (φs + fφy + 1
2g

2φyy)ds+ gφydw

= (φs + Lφ)ds+ gφydw.

Notice that dz1dz2 = 0. Applying the above with φ = u, the solution of the PDE (5), gives

d

(
e−
∫ s
t
b(y(r))dru(y(s), s)

)
= z1dz2 + z2dz1

= z1 [(us + Lu)ds+ guydw]− z1ubds

= z1guydw.

The right hand side has expected value 0, so

Ey(t)=x[z1(T )z2(T )] = z1(t)z2(t) = u(x, t)
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as asserted.

A moment’s thought reveals that vector-valued case is no different. The discounted expected
payoff (4) solves the PDE

ut + Lu− bu = 0

where L is the infinitesimal generator of the diffusion y.

Running payoff. Suppose we are interested in

u(x, t) = Ey(t)=x

[∫ T

t
Ψ(y(s), s)ds

]

for some specified function Ψ. Then u solves

ut + Lu+ Ψ(x, t) = 0.

The final-time condition is u(x, T ) = 0, since we have included no final-time term in the
“payoff.” The proof is hardly different from before: by Ito’s lemma,

d[u(y(t), t)] = (ut + Lu)dt+∇u · g · dw
= −Ψ(y(t), t)dt+∇u · g · dw.

Integrating and taking the expectation gives

Ey(t)=x [u(y(T ), T )]− u(x, t) = Ey(t)=x

[
−
∫ T

t
Ψ(y(s), s)ds

]
.

This gives the desired assertion, since u(y(T ), T ) = 0.

Boundary value problems and exit times. The preceding examples use stochastic integration
from time t to a fixed time T , and they give PDE’s that must be solved for all x ∈ Rn.
It’s also interesting to consider integration from time t to the first time y exits from some
specified region. The resulting PDE must be solved on this region, with suitable boundary
data.

Let D be a region in Rn. Suppose y is an Rn-valued diffusion solving

dy = f(y, s)ds+ g(y, s)dw for s > t, with y(t) = x

with x ∈ D. Let

τ(x) = the first time y(s) exits from D, if
prior to T ; otherwise τ(x) = T .

This is an example of a “stopping time” (key feature: the statement “τ(x) < t” is Ft-
measurable; in other words, knowledge of events up to time t determines whether or not
the process has exited from D before time t). Suppose we are interested in

u(x, t) = Ey(t)=x

[∫ τ(x)

t
Ψ(y(s), s)ds+ Φ(y(τ(x)), τ(x))

]
.
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Then u solves
ut + Lu+ Ψ = 0 for x ∈ D

with boundary condition
u(x, t) = Φ(x, t) for x ∈ ∂D

and final-time condition
u(x, T ) = Φ(x, T ) for all x ∈ D.

The justification is entirely parallel to our earlier examples. The only change is that we
integrate, in the final step, to the stopping time τ rather than the final time T . (This is
permissible for any stopping time satisfying E[τ ] <∞.)

Elliptic boundary-value problems. Now suppose f and g in the stochastic differential equa-
tion don’t depend on t, and for x ∈ D let

τ(x) = the first time y(s) exits from D.

(Unlike the previous example, we do not impose a final time T ). Suppose furthermore the
process does eventually exit from D, (more precisely: assume E[τ(x)] <∞, for all x ∈ D).
Then

u(x) = Ey(0)=x

[∫ τ(x)

0
Ψ(y(s))ds+ Φ(y(τ(x)))

]
solves

Lu+ Ψ = 0 for x ∈ D,

with boundary condition
u = Φ for x ∈ ∂D.

The justification is again entirely parallel to our earlier examples. Notice the analogy with
the “least arrival time” problems of deterministic optimal control.

Examples. These results are already interesting for the simplest diffusion process: Brow-
nian motion itself. For example: consider n-dimensional Brownian motion starting at x.
What is the mean time it takes to exit from a ball of radius R, for R > |x|? Answer: apply
the last example with f = 0, g = identity matrix, Ψ = 1, Φ = 0. It tells us the mean exit
time is the solution u(x) of

1
2∆u+ 1 = 0

in the ball |x| < R, with u = 0 at |x| = R. The (unique) solution is

u(x) =
1
n

(R2 − |x|2).

Second example, this time scalar. Consider the scalar lognormal process

dy = µydt+ σydw

with µ and σ constant. Starting from y(0) = x, what is the mean exit time from a specified
interval (a, b) with a < x < b? Answer: the mean exit time u(x) solves

µxux + 1
2σ

2x2uxx + 1 = 0 for a < x < b
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with boundary conditions u(a) = u(b) = 0. The solution is

u(x) =
1

1
2σ

2 − µ

(
log(x/a)− 1− (x/a)1−2µ/σ2

1− (b/a)1−2µ/σ2 log(b/a)

)

(readily verified by checking the equation and boundary conditions).

Oksdendal has a nice discussion of basic properties of Brownian motion (transience and
recurrence) using methods similar to the above (Oksendal example 7.4.2, see also exercises
7.4 and 7.9).
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