PDE for Finance Notes – Section 3 Addendum

Notes by Robert V. Kohn, Courant Institute of Mathematical Sciences. For use only in connection with the NYU course PDE for Finance, G63.2706, Spring 1999.

Verification. In the deterministic case we used a heuristic argument to derive the HJB equation, but then showed completely honestly that a (sufficiently smooth) C^1 solution of the HJB equation (satisfying appropriate boundary or final-time conditions) provides a bound on the value attainable by any control. A similar result holds in the stochastic setting.

Rather than give a general result, let us focus on the example of Merton's optimal selection and consumption problem presented in Section 3. (The general result requires no additional ideas.) The state equation is

$$dy = [(1 - \alpha_1)yr + \alpha_1y\mu - \alpha_2]dt + \alpha_1y\sigma dw$$

which we write for simplicity as

$$dy = f(y, \alpha_1, \alpha_2)dt + \alpha_1 y \sigma dw.$$

We defined the value function to be

$$u(x,t) = \max_{\alpha} E_{y(t)=x} \int_{t}^{\tau} e^{-\rho s} h[\alpha_{2}(s)] ds$$

where τ is either the first time y = 0 (if this happens before time T) or $\tau = T$ (if y doesn't reach 0 before time T). We derived the HJB equation:

$$u_t + \max_{a_1, a_2} \left\{ e^{-\rho t} h(a_2) + f(x, a_1, a_2) u_x + \frac{1}{2} x^2 a_1^2 \sigma^2 u_{xx} \right\} = 0$$

for t < T, with u = 0 at t = T. We didn't fuss over it before, but clearly u should also satisfy u(0, s) = 0 for all s.

Consider any control $\tilde{\alpha}(s)$, and the associated state $\tilde{y}(s)$ starting from $\tilde{y}(t) = x$. Of course we assume $\tilde{\alpha}$ is non-anticipating, i.e. it depends only on knowledge of $\tilde{y}(s)$ in the present and past, not the future. We wish to show that

$$u(x,t) \ge E_{y(t)=x} \int_t^{\tilde{\tau}} e^{-\rho s} h[\tilde{\alpha}_2(s)] \, ds.$$

Consider $\phi(s) = u(\tilde{y}(s), s)$: by the Ito calculus it satisfies

$$d\phi = u_s ds + u_y d\tilde{y} + \frac{1}{2} u_{yy} d\tilde{y} d\tilde{y}$$

= $u_s ds + u_y [f(\tilde{\alpha}, \tilde{y}) ds + \tilde{\alpha}_1(s) \tilde{y}(s) \sigma dw] + \frac{1}{2} u_{yy} \tilde{\alpha}_1^2(s) \tilde{y}^2(s) \sigma^2 ds.$

Therefore

$$u(\tilde{y}(t'), t') - u(\tilde{y}(t), t) = \int_{t}^{t'} [u_s + u_y f + \frac{1}{2} u_{yy} \tilde{y}^2 \tilde{\alpha}_1^2 \sigma^2] dt + \int_{t}^{t'} \sigma \tilde{\alpha}_1 \tilde{y} u_y dw$$

where each integrand is evaluated at $y = \tilde{y}(s)$, $\alpha = \tilde{\alpha}(s)$ at time s. The expected value of the second integral is 0 (here is where we use that α is nonanticipating; this will be clearer after we discuss stochastic integrals, coming soon). Thus taking the expectation, and using the initial condition:

$$E\left[u(\tilde{y}(t'),t')\right] - u(x,t) = E\left[\int_t^{t'} (u_s + u_y f + \frac{1}{2}u_{yy}\tilde{y}^2\tilde{\alpha}_1^2\sigma^2)dt\right].$$

Now from the definition of the Hamiltonian we have

$$u_t(\tilde{y}(s), s) + \left\{ e^{-\rho s} h(\tilde{\alpha}_2(s)) + f(\tilde{y}(s), \tilde{\alpha}(s)) u_y(\tilde{y}(s), s) + \frac{1}{2} \tilde{y}^2(s) \tilde{\alpha}_1^2(s) \sigma^2 u_{yy}(\tilde{y}(s), s) \right\} \le 0.$$

Combining this with the preceding relation gives

$$E\left[u(\tilde{y}(t'),t')\right] - u(x,t) \le -E\left[\int_t^{t'} e^{-\rho s} h(\tilde{\alpha}_2(s)ds\right].$$

Taking $t' = \tilde{\tau}$ and using the fact that $u(\tilde{y}(t'), t') = 0$, we conclude that

$$u(x,t) \geq E\left[\int_t^{\tilde{\tau}} e^{-\rho s} h(\tilde{\alpha}(s) ds\right]$$

as desired.

Notice that this calculation rests on pretty much the same tools we used to derive the HJB: (a) the Ito calculus, to get a representation of $u(\tilde{y}(s), s)$, and (b) the fact that the integral "dw" has expected value 0.