
PDE for Finance Notes – Section 3
Notes by Robert V. Kohn, Courant Institute of Mathematical Sciences. For use only in
connection with the NYU course PDE for Finance, G63.2706, Spring 1999.

Announcements

(1) There will be no lectures March 10 [I’m out of town], March 17 [spring break], and
March 31 [Passover].

(2) A mechanism has been set up for students in this course to send each other email.
To receive such messages, send email to the address majordomo@cs.nyu.edu with a
blank subject line and the single text line subscribe g63 2706 001 sp99. To send a
message to every subscriber, send it to g63 2706 001 sp99@cs.nyu.edu. For further
information on the listserver software, send email to majordomo@cs.nyu.edu with a
blank subject line and the single text line help. If your system automatically puts a
signature at the end of your email, put ”end” on a separate line after ”help” to avoid
the listserver software trying to process your signature as a series of commands.

Introduction to stochastic dynamic programming. Stochastic dynamic programming
is like deterministic dynamic programming except the equation of state is a stochastic
differential equation, and the goal is to maximize or minimize the expected utility or cost.
To see what new issues this raises, we set up and briefly discuss two examples, namely:
(a) perturbation of a deterministic problem by small noise, and (b) :w Merton’s optimal
consumption problem for one stock and one bond. Here we basically follow bits of Chapter
VI of Fleming and Rishel.

Building the machinery to do these and other examples more carefully will take several
lectures. Moreover we have yet to connect these ideas with martingales and risk-neutral
measures. But before undertaking these tasks, we spend some time getting used to prob-
abilistic thinking by examining some discrete-time stochastic dynamic programming prob-
lems, namely: (1) optimal control of execution costs, and (2) when to sell an asset. For
topic (1) we follow a recent article by Dmitris Bertsimas and Andrew Lo, “Optimal control
of execution costs,” J. Financial Markets 1 (1998) 1-50 (copy available in the Green box
reserve). For topic (2) we follow section 2.4 of Bertsekas.

****************************

Perturbation of a deterministic problem by small noise. We’ve discussed at length
the deterministic dynamic programming problem with state equation

dy/ds = f(y(s), α(s)) for t < s < T, y(t) = x,

controls α(s) ∈ A, and objective

max
α

{∫ T

t
h(y(s), α(s)) ds+ g(y(T ))

}
.
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Its value function satisfies the HJB equation

ut +H(∇u, x) = 0 for t < T, u(x, T ) = g(x),

with Hamiltonian
H(p, x) = max

a∈A
{f(x, a) · p+ h(x, a)}. (1)

Let us show (heuristically) that when the state is perturbed by a little noise, the value
function of resulting stochastic control problem solves the perturbed HJB equation

ut +H(∇u, x) +
1
2
ε2∆u = 0 (2)

where H is still given by (1), and ∆u =
∑
i
∂2u
∂x2
i
. This gives another explanation why the

viscosity solution of the deterministic HJB is the proper notion of weak solution.

Our phrase “perturbing the state by a little noise” means this: we replace the ODE gov-
erning the state by the stochastic differential equation (SDE)

dy = f(y, α)ds+ εdw,

keeping the initial condition y(t) = x. Here dw is a standard, vector-valued Brownian
motion (each component wi is a scalar-valued Brownian motion, and different components
are independent). If you’re completely new to stochastic differential equations, you can read
about them e.g. in Neftci. If you know even the statement of Ito’s lemma, the following
should be accessible.

The evolution of the state is now stochastic, hence so is the value of the utility. Our goal
in the stochastic setting is to maximize the expected utility. The value function is thus

u(x, t) = max
α

Ey(t)=x

{∫ T

t
h(y(s), α(s)) ds+ g(y(T ))

}
.

There is some subtlety to the question: what is the class of admissible controls? Of course
we still restrict α(s) ∈ A. But since the state is random, it’s natural for the control to be
random as well – however its value at time s should depend only on the past and present,
not on the future (which is after all unknown to the controller). Such controls are called
“non-anticipating.” A simpler notion, sufficient for most purposes, is to restrict attention
to feedback controls, i.e. to assume that α(s) is a deterministic function of s and y(s). One
can show (under suitable hypotheses, when the state equation is a stochastic differential
equation) that these two different notions of “admissible control” lead to the same optimal
value.

Courage. Let’s look for the HJB by applying the usual heuristic argument, based on the
principle of dynamic programming applied to a short time interval:

u(x, t) ≈ max
a∈A

{
h(x, a)∆t+ Ey(t)=xu(y(t+ ∆t), t+ ∆t)

}
.

The term h(x, a)∆t approximates
∫ t+∆t
t h(y(s), a) ds, because y(s) = x+ terms tending to

0 with ∆t. It is deterministic. The expression u(y(t+ ∆t), t+ ∆t) is the optimal expected
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utility starting from time t + ∆t and spatial point y(t + ∆t). We must take its expected
value, because y(t + ∆t) is random. (If you think carefully you’ll see that the Markov
property of the process y(s) is being used here.)

We’re almost in familiar territory. In the deterministic case the next step was to express
u(y(t + ∆t), t + ∆t) using the state equation and the Taylor expansion of u. Here we do
something analogous: use Ito’s lemma and the stochastic differential equation. Ito’s lemma
says the process φ(s) = u(y(s), s) satisfies

dφ =
∂u

∂s
ds+

∑
i

∂u

∂yi
dyi +

1
2

∑
i,j

∂2u

∂yi∂yj
dyidyj

= ut(y(s), s)ds+∇u · (f(y(s), α(s))ds+ εdw) +
1
2
ε2∆u ds.

The real meaning of this statement is that

u(y(t′), t′)− u(y(t), t) =
∫ t′

t
[ut(y(s), s) +∇u(y(s), s) · (f(y(s), α(s)) +

1
2
ε2∆u(y(s), s)]ds

+
∫ t′

t
ε∇u(y(s), s) · dw.

The expected value of the second integral is 0, so

Ey(t)=x[u(y(t+ ∆t), t+ ∆t)]− u(x, t) ≈ [ut(x, t) +∇u(x, t) · f(x, a) +
1
2
ε2∆u(x, t)]∆t.

(If you don’t know enough about the Ito integral to follow this, don’t be afraid – my main
purpose is to motivate you to learn it.)

Assembling these ingredients, we have

u(x, t) ≈ max
a∈A

{
h(x, a)∆t+ u(x, t) + [ut(x, t) +∇u(x, t) · f(x, a) +

1
2
ε2∆u(x, t)]∆t

}
.

This is almost identical to the relation we got in the deterministic case. The only difference
is the new term 1

2ε
2∆u(x, t)∆t on the right. It doesn’t depend on a, so the optimal a is

unchanged – it still maximizes h(x, a) + f(x, a) · ∇u – and we conclude, as asserted, that u
solves (2).

Optimal portfolio selection and consumption. This is the simplest of a class of
problems solved by Robert Merton in his paper “Optimal consumption and portfolio rules
in a continuous-time model”, J. Economic Theory 3, 1971, 373-413 (reprinted in his book
Continuous Time Finance.) Consider a world with one risky asset and one risk-free asset.
The risk-free asset grows at a constant risk-free rate r, i.e. its price per share satisfies
dp1/dt = p1r. The risky asset executes a geometric Brownian motion with constant drift
µ > r and volatility σ, i.e. its price per share solves the stochastic differential equation
dp2 = µp2dt+ σp2dw.
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The control problem is this: an investor starts with initial wealth x at time t. His control
variables are

α1(s) = fraction of total wealth invested in the risky asset at time s
α2(s) = rate of consumption at time s.

It is natural to restrict these controls by 0 ≤ α1(s) ≤ 1 and α2(s) ≥ 0. We ignore transaction
costs. The state is the investor’s total wealth y as a function of time; it solves

dy = (1− α1)yrdt+ α1y(µdt+ σdw)− α2dt

so long as y(s) > 0. We denote by τ the first time y(s) = 0 if this occurs before time T ,
or τ = T (a fixed horizon time) otherwise. The investor seeks to maximize the discounted
total utility of his consumption. We therefore consider the value function

u(x, t) = max
α1,α2

Ey(t)=x

∫ τ

t
e−ρsh[α2(s)] ds

where h[·] is a specified utility function (monotone increasing and concave, with h(0) = 0).
We shall specialize below to h(α2) = αγ2 with 0 < γ < 1.

Note: Our u(x, t) is utility of consumption discounted to time 0. It might seem more natural
to consider the value of utility discounted to time t, i.e. to use the discount factor e−ρ(s−t)

instead of e−ρs. No need to redo the problem: this alternative value function is eρtu(x, t).)

We find the HJB by a heuristic argument very similar to the one presented above. The
principle of dynamic programming applied on a short time interval gives:

u(x, t) ≈ max
a1,a2

{
e−ρth(a2)∆t+ Ey(t)=xu(y(t+ ∆t), t+ ∆t)

}
.

To evaluate the expectation term, we use Ito’s lemma again. Using the state equation

dy = [(1− α1)yr + α1yµ− α2]dt+ α1yσdw

and skipping straight to the conclusion, we have

u(y(t′), t′)−u(y(t), t) =
∫ t′

t
[ut+uy[(1−α1)yr+α1yµ−α2]+

1
2
uyyy

2α2
1σ

2]dt+
∫ t′

t
α1σyuydw.

The expected value of the second integral is 0, so

Ey(t)=x[u(y(t+ ∆t), t+ ∆t)]− u(x, t) ≈ [ut + uy[(1− α1)yr + α1yµ− α2 +
1
2
uyyy

2α2
1σ

2]∆t.

Assembling these ingredients,

u(x, t) ≈ max
a1,a2

{
e−ρth(a2)∆t+ u(x, t) + [ut + ux[(1− a1)xr + a1xµ− a2] +

1
2
uxxx

2a2
1σ

2]∆t
}
.

Cleaning up, and taking the limit ∆t→ 0, we get

ut + max
a1,a2

{
e−ρth(a2) + [(1− a1)xr + a1xµ− a2]ux +

1
2
x2a2

1σ
2uxx

}
= 0.
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This is the relevant HJB equation. It is to be solved for t < T , with u(x, T ) = 0 since we
have associated no utility associated to final-time wealth.

That looks pretty horrible, but it isn’t really so bad. Let us assume that ux > 0 (practically
obvious – how would you prove it?) and uxx < 0 (not quite so obvious – reflects the
concavity of the utility function). Then optimal a1 (ignoring the constraint 0 ≤ a1 ≤ 1) is

a∗1 = −(µ− r)ux
σ2xuxx

which is positive. We proceed, postponing till later the verification that a∗1 ≤ 1. The
optimal a2 satisfies

h′(a∗2) = eρtux;

we can sure this a∗2 is positive by assuming that h′(0) =∞.

When h(a2) = aγ2 with 0 < γ < 1 we can get an explicit solution. Indeed, let us look for a
solution of the form

u(x, t) = g(t)xγ .

The associated a∗1 and a∗2 are

a∗1 =
(µ− r)
σ2(1− γ)

, a∗2 =
[
eρtg(t)

]1/(γ−1)
x.

We assume henceforth that µ− r < σ2(1− γ) so that a∗1 < 1. Substuting these values into
the HJB equation gives, after some arithmetic,

dg

dt
+ νγg + (1− γ)g(eρtg)1/(γ−1) = 0

with

ν = r +
(µ− r)2

2σ2(1− γ)
.

We must solve this with g(T ) = 0. The substitution f = (eρtg)1/(γ−1) leads to a linear
differential equation for f(s). It is readily solved to give

g(t) = e−ρt
[

1− γ
ρ− νγ

(
1− e−

(ρ−νγ)(T−t)
1−γ

)]1−γ
.

Of course this solution is meaningful only if ρ > νγ.

We have solved the HJB equation; but have we found the value function? The answer is
yes, by a suitable verification argument. See the Section 3 addendum for the verification
argument.

It should not be surprising that we have to place some restrictions on the parameters to
get this solution. When these restrictions fail, inequalities that previously didn’t bother us
become important (such as a restriction on borrowing).
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Discrete-time stochastic optimal control. An honest treatment of continuous-time
stochastic dynamic programming requires mastery of certain tools, such as stochastic dif-
ferential equations and the Ito calculus. The discrete-time setting is more accessible – an
honest treatment requires nothing but basic probability. Moreover some very interesting
problems can be done this way. Let’s sample a couple of them.

Optimal control of execution costs. This example is developed in the recent article
by Dmitris Bertsimas and Andrew Lo, “Optimal control of execution costs,” J. Financial
Markets 1 (1998) 1-50. Robert Almgren and Neil Chriss have a related working paper
“Optimal liquidation.” Both articles are on reserve in the green box.

The problem is this: an investor wants to buy a large amount of some specific stock. If
he buys it all at once he’ll drive the price up, thereby paying much more than necessary.
Better to buy part of the stock today, part tomorrow, part the day after tomorrow, etc. till
the full amount is in hand. But how best to break it up?

Here’s a primitive model. It’s easy to criticize (we’ll do this below), but it’s a good starting
point – and a nice example of stochastic optimal control. Suppose the investor wants to
buy Stot shares of stock over a period of N days. His control variable is Si, the number of
shares bought on day i. Obviously we require S1 + . . .+ SN = Stot.

We need a model for the impact of the investor’s purchases on the market. Here’s where
this model is truly primitive: we suppose that the price Pi the investor achieves on day i is
related to the price Pi−1 on day i− 1 by

Pi = Pi−1 + θSi + σei (3)

where ei is a Gaussian random variable with mean 0 and variance 1 (independent of Si and
Pi−1. Here θ and σ are fixed constants.

And we need a goal. Following Bertsimas and Lo we focus on minimizing the expected total
cost:

minE

[
N∑
i

PiSi

]
.

To set this up as a dynamic programming problem, we must identify the state. There is a
bit of art here: the principle of dynamic programming requires that we be prepared to start
the optimization at any day i = N,N − 1, N − 2, . . . and when i = 1 we get the problem at
hand. Not so hard here: the state on day i is described by the most recent price Pi−1 and
the amount of stock yet to be purchased Wi = Stot − S1 − . . . − Si−1. The state equation
is easy: Pi evolves as specified above, and Wi evolves by

Wi+1 = Wi − Si.

Dynamic programming finds the optimal control by starting at day N , and working back-
ward one day at a time. The relation that permits us to work backward is the one-time-step
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version of the principle of dynamic programming (known as the Bellman equation). In this
case it says:

Vi(Pi−1,Wi) = min
s
E [Pis+ Vi+1(Pi,Wi+1)] .

Here Vi(P,W ) is the value function:

Vi(P,W ) = optimal expected cost of purchasing W shares
starting on day i, if the most recent price was P .

(The subscript i plays the role of time.)

To find the solution, we begin by finding VN (P,W ). Since i = N the investor has no choice
but to buy the entire lot of W shares, and his price is PN = P + θW + eN , so his expected
cost is

VN (P,W ) = E [(P + θW + eN )W ] = PW + θW 2.

Next let’s find VN−1(P,W ). The Bellman equation gives

VN−1(P,W ) = min
s
E [(P + θs+ eN−1)s+ VN (P + θs+ eN−1,W − s]

= min
s
E
[
(P + θs+ eN−1)s+ (P + θs+ eN−1)(W − s) + θ(W − s)2

]
= min

s

[
(P + θs)s+ (P + θs)(W − s) + θ(W − s)2

]
= min

s

[
W (P + θs) + θ(W − s)2

]
.

The optimal s is W/2, giving value

VN−1(P,W ) = PW +
3
4
θW 2.

Thus: starting at day N = 1 (so there are only 2 trading days) the investor should split his
purchase in two equal parts, buying half the first day and half the second day. His impact
on the market costs him, on average, an extra 3

4θW
2 over the no-market-impact value PW .

Proceeding similarly for day N − 2 etc., a pattern quickly becomes clear: starting at day
N − i with the goal of purchasing W shares, if the most recent price was P , the optimal
trade on day i (the optimal s) is W/(i+ 1), and the expected cost of all W shares is

VN−i(P,W ) = WP +
i+ 2

2(i+ 1)
θW 2.

This can be proved by induction (the inductive step is very similar to our calculation of
VN−1).

Notice the net effect of this calculation is extremely simple: no matter when he starts, the
investor should divide his total goal W into equal parts – as many as there are trading days
– and purchase one part each day. Taking i = N − 1 we get the answer to our original
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question: if the most recent price is P and the goal is to buy Stot over N days, then this
optimal strategy leads to an expected total cost

V1(P, Stot) = PStot +
θ

2
(1 +

1
N

)S2
tot.

There’s something unusual about this conclusion. The investor’s optimal strategy is not
influenced by the random flucutations of the prices. It’s always the same, and can be fixed
in advance. That’s extremely unusual in stochastic control problems: the optimal control
can usually be chosen as a feedback control, i.e. a deterministic function of the state – but
since the state depends on the fluctuations, so does the control.

I warned you it was easy to criticize this model. Some comments:

1. The variance of the noise in the price model never entered our analysis. That’s because
our hypothetical investor is completely insensitive to risk – he cares only about the
expected result, not about its variance. No investor is like this. The paper by Almgren
and Chriss considers the trade-off between return and risk (expected cost and variance
of cost).

2. The price law (3) is certainly wrong: it has the ith trade Si increasing not just the ith
price Pi but also every subsequent price. A better law would surely make the impact
of trading temporary. Bertismas and Lo consider one such law, for which the problem
still has a closed-form solution derived by methods similar to those used above.

The take-home messages: (a) discrete-time stochastic dynamic programming is fun and
easy, though of course closed-form solutions aren’t always available; and (b) there’s lots
more to be done concerning modeling and control of execution costs. A food-for-thought
question: (c) what is the continuous-time analogue of the example worked out above?

When to sell an asset. This is an optimal stopping problem. It’s also interesting because
the state is described by a discrete variable as well as a continuous one.

The problem is this: you have an asset (e.g. a house) you wish to sell. One offer arrives
each week (yes, this example is oversimplified). The offers are independent draws from a
single, known distribution. You must sell the house by the end of N weeks. If you sell it
earlier, you’ll invest the cash (risk-free), and its value will increase by factor (1 + r) each
week. Your goal is to maximize the expected cash on hand at the end of the Nth week.

The control, of course, is the decision (taken each week) to sell or not to sell. The state in a
given week consists of (a) the current offer, and (b) whether the house is already sold. We
use w to denote the current offer, and s, n to denote sold vs. not-sold. The state evolution
is summarized by the following diagram:
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The value function is

Ji(w, ·) = expected week-N cash produced by current and future sales,
if the current week is i and the current offer is w.

The · in Ji(w, ·) stands for n or s. Obviously Ji(w, s) = 0 for all i and all w.

We start as usual with the final time, which as we’ve indexed things is N − 1. If the house
isn’t already sold you have no choice but to sell it, realizing

JN−1(w, n) = w.

The key to working backward is the Bellman equation, which in this setting says:

Ji(w, n) = max
{

(1 + r)N−1−iw,E[Ji+1(w′, n)]
}
.

Here w′ is an independent trial from the specified distribution (the next week’s offer); the
first choice corresponds to the decision “sell now”, the second choice ot the decision “don’t
sell now”.

It’s convenient to work not with Ji but rather

Vi(w) = (1 + r)i−N+1Ji(w),

which is the present value (at week i) of the income from future sales. Evidently we have
VN−1(w) = w and

Vi(w, n) = max
{
w, (1 + r)−1E[Vi+1(w′, n)]

}
.

The optimal decision in week i is:

accept offer w if w ≥ αi
reject offer w if w ≤ αi

with
αi = (1 + r)−1E[Vi+1(w′)].

To complete the solution to the problem we must find the sequence of real numbers α0, . . . αN−2.
Since

Vi+1(w, n) =

{
w if w > αi+1

αi+1 if w ≤ αi+1

we have

αi =
1

1 + r

∫ αi+1

0
αi+1 dP (w) +

1
1 + r

∫ ∞
αi+1

w dP (w)

=
1

1 + r
αi+1P (αi+1) +

1
1 + r

∫ ∞
αi+1

w dP (w)
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where P (λ) = prob{w < λ} is the distribution function of w. This relation, with the
initialization αN−1 = 0, permits one to calculate the α’s one by one (numerically). It can
be shown that they are monotone in i: α0 > α1 > . . . (see Bertsekas). This is natural, since
early in the sales process it makes no sense to take a low offer, but later on it may be a
good idea to avoid being forced to take a still lower one on week N . One can also show
that after many steps of the recursion relation for αi, the value of αi approaches the fixed
point α∗ which solves

α∗ =
1

1 + r
α∗P (α∗) +

1
1 + r

∫ ∞
α∗

w dP (w).

Thus when the horizon is very far away, the optimal policy is to reject offers below α∗ and
accept offers above α∗.
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