
PDE for Finance Notes – Section1 addendum
Notes by Robert V. Kohn, Courant Institute of Mathematical Sciences. For use only in
connection with the NYU course PDE for Finance, G63.2706, Spring 1999.

Discussion of the example formulated in Section 1 involving a money-market
account, a high-yield account, and transaction costs. These notes are slightly in-
complete at the very end; comments, corrections, and improvements are welcome. The
problem and its solution are from S. Shreve, H.M. Soner, and G. Xu, “Optimal investment
and consumption with two bonds and transaction costs,” Math. Finance Vol. 1, No. 3,
1991, 53-84. That paper considers a much more general class of utility functions; restricting
our attention to utility γp permits a much simpler treatment.

Notation. In Section 1 we said the goal was to maximize
∫∞

0 e−sγp(s)ds. It’s equivalent
to maximize 1

p

∫∞
0 e−sγp(s)ds. This trivial change of goal replaces u by u/p and changes

the Hamilton-Jacobi equation accordingly. To match the notation of Shreve, Soner, and Xu
I’ll work with the latter utility. The following figure visualizes the region permitted by the
solvency constraints.

Homogeneity. The value function satisfies

u(λx, λy) = λpu(x, y) (1)

for any λ > 0. This is a consequence of (i) pth power utility, and (ii) proportional transaction
costs. In fact, consider any starting portfolio (x, y) and controls (α(s), β(s), γ(s)), and let
(X(s), Y (s)) be the associated portfolio trajectory. Then (λX(s), λY (s)) is the portfolio
trajectory associated with starting portfolio (λx, λy) and controls (λα(s), λβ(s), λγ(s)), and
its payoff is λp times that of γ. This shows that

u(λx, λy) ≥ λpu(x, y).

Applying this with λ replaced by λ−1 gives

u(x, y) ≥ λ−pu(λx, λy).

These combine to give (1).

The x > 0 solvency boundary. It’s easy to see that if the initial portfolio (x, y) lies on
the x > 0 part of the insolvency boundary then the only admissible policy is to liquidate
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immediately, transfering funds from money-market to pay off the short high-yield position,
effectively jumping to (0, 0). Thus u = 0 on this part of the solvency boundary. In fact:
our hypothesis is (1− µ)x+ y = 0, and combining the state equations gives

d

ds
[(1− µ)X + Y ] = r[(1− µ)X + Y ] + (R− r)Y + [(1− µ)2 − 1]β − γ.

The right hand side is nonpositive at s = 0, but it cannot be negative because this would
make the trajectory leave the solvency region. This forces β = γ = 0, but more: it forces
the liquidation to take place immediately, since otherwise the (R−r)Y term would push the
solution out of the solvency region. This reveals an imprecision in the problem formulation:
if we only permit continuous controls (as our notation suggests), then we should not permit
initial portfolios on the x > 0 part of the solvency boundary.

Restrictions on parameters. It’s natural to place some restrictions on the parameters.
Here’s why. Suppose the initial portfolio is on the y > 0 part of the solvency boundary.
Then one possible strategy is to set α = β = 0, and choose γ(s) in such as way as to keep
(X(s), Y (s)) on the the solvency boundary. To find γ, observe that our strategy implies
X(s) + (1− µ)Y (s) = 0, Y (s) = yeRs, and Ẋ = rX − γ. A little algebra gives

γ(s) = (R− r)(1− µ)yeRs

and this gives the payoff

1
p

∫ ∞
0

(R− r)p(1− µ)pype(Rp−1)s ds =
yp(1− µ)p(R− r)p

p(1−Rp)

provided pR < 1. The integral would be infinite if pR ≥ 1. Thus to have an everywhere-
finite value function we must require

pR < 1. (2)

That was just one possible strategy; there are others. A second natural way of staying
on the y > 0 solvency boundary is to transfer funds continuously from the money market
account into the high yield account (really: borrow money at the money-market rate and
use it to invest at the high-yield rate). Suppose this is done using

α(s) =
1− pR
1− µ

c0Y (s)

for some c0 > 0. Then a bit of calculation gives

Y (s) = yec1s with c1 = R+ (1− pR)c0,

and the relations X(s) + (1− µ)Y (s) = 0, Ẋ = rX − γ − α determine that

γ(s) =

{
(1− µ)(R− r)− 2µ− µ2

1− µ
(1− pR)c0

}
yec1s.
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One can look for the condition that the payoff be finite, and if it is finite then one can
optimize c0. But instead, let’s look for the condition that this policy be no better than the
one considered earlier, i.e. the condition that the optimal c0 be c0 = 0. For any c0 the
payoff is

1
p
yp

{
(1− µ)(R− r)− 2µ−µ2

1−µ (1− pR)c0

}p
(1−Rp)(1− c0p)

provided c0p < 1. The condition that the optimal c0 be 0 is

(1− µ)(R− r) < 2µ− µ2

1− µ
(1− pR), (3)

which is stronger than (2). We shall henceforth assume the stronger restriction (3).

The Hamilton-Jacobi-Bellman equation. The HJB equation is easy to derive. We
revert to the generic Section 1 notation: the state equation is dy/ds = f(y, α) with y(0) = x,
and the value function is u(x) = maxα

∫∞
0 e−sh(y, α) ds. Arguing in our usual heuristic way:

u(x) ≥ h(x, a)∆t+ e−∆tu(x+ f(x, a)∆t).

Taylor expanding u, taking the limit ∆t→ 0, and optimizing in a gives

0 = max
a
{h+ f · ∇u} − u.

Now we change back to the notation of our example to implement this. It says
H(x, y, ux, uy)− u = 0 with

H = max
α,β,γ>0

{
1
p
γp + (rx− α+ (1− µ)β − γ)ux + (Ry + (1− µ)α− β)uy

}
Finiteneness of H requires

−ux + (1− µ)uy ≤ 0 with strict negativity implying α = 0;

(1− µ)ux − uy ≤ 0 with strict negativity implying β = 0; and

ux ≥ 0.

The optimal γ satisfies γp−1 = ux, whence 1
pγ

p − γux = 1−p
p u

p/(p−1)
x . (We are assuming

0 < p < 1.) With this substitution, and assuming the finiteness conditions above,

H =
1− p
p

up/(p−1)
x + rxux +Ryuy.

The verification theorem. We might hope to guess the optimal investment policy. But
how will we ever prove the guess is right? Answer: use the usual verification argument.
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Suppose v(x, y) ≥ 0 is defined and differentiable on the solvent region of the (x, y) plane.
Suppose furthermore

−vx + (1− µ)vy ≤ 0
(1− µ)vx − vy ≤ 0

−v +
1− p
p

vp/(p−1)
x + rxvx +Ryvy ≤ 0

in this region. Then the value function u satisfies

u(x, y) ≤ v(x, y).

Any proposal of an investment policy gives a lower bound on the value function u. The
verification argument gives an upper bound. If we can make them agree, then we’ve found
u (and also an optimal investment policy). The proof of the verification theorem is easy:
we start with the calculation

d

ds
e−sv(X(s), Y (s)) = e−s(−v + vxẊ + vyẎ )

= e−s (−v + vx[rX − α+ (1− µ)β − γ] + vy[RY + (1− µ)α− β])
= e−s (−v + α[(1− µ)vy − vx] + β[(1− µ)vx − vy] + vxrX + vyRY − vxγ)
≤ e−s (−v + vxrX + vyRY − vxγ)

using the positivity of α and β. Now remember from the calculation of H:

1
p
γp − γvx ≤

1− p
p

vp/(p−1)
x

which can be written as
−γvx ≤

1− p
p

vp/(p−1)
x − 1

p
γp.

So

d

ds
e−sv(X(s), Y (s)) = e−s

(
−1
p
γp(s) +

1− p
p

vp/(p−1)
x + vxrX + vyRY − v

)
≤ e−s

(
−1
p
γp(s)

)
.

Integrating from s = 0 to s = S, then using that v(X(S), Y (S)) ≥ 0, then sending S →∞,
we get

−v(X(0), Y (0)) ≤ −1
p

∫ ∞
0

e−sγp(s) ds,

i.e. v(x, y) ≥ u(x, y) as desired.

The solution. We claim that under the parameter restriction (3) the value function u and
the optimal policy are as follows:
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• The solvent region is divided into two parts by a ray x = h0y.

• To the right of this ray the optimal policy is to move immediately to this ray by
transfering funds from money-market to high-yield. Consequently, to the right of this
ray u is constant along each line (1−µ)x+ y = constant. This wedge might be called
the “transfer from money-market region”.

• To the left of this ray the optimal policy is to do no transactions, and to consume
at rate γ = u

1/(p−1)
x . This wedge might be called the “no transaction region”. The

portfolio will approach and eventually hit (in finite time) the y > 0 part of the solvency
boundary.

• Once the portfolio is on the solvency boundary the optimal policy is to stay on this
boundary, doing no transactions. The associated consumption law and the value of
u along this boundary were described above in the paragraph concerning restrictions
on the parameters.

Using the homogeneity property, we can determine u more or less explicitly as follows. The
homogeneity property implies that

u(x, y) = ypφ(x/y)

for some function φ(ξ). The last bullet above determines u on the y > 0 part of the solvency
boundary, so it determines φ(µ− 1):

φ(µ− 1) =
(1− µ)p(R− r)p

p(1−Rp)
. (4)

The second bullet says that in the no-transaction region u solves −u+ 1−p
p u

p/(p−1)
x +rxux+

Ryuy = 0. Since

ux = yp−1φ′(x/y) uy = yp−1 [pφ(x/y)− (x/y)φ′(x/y)
]

we deduce a first-order differential equation for φ(ξ):

−φ+
1− p
p

(φ′)p/(p−1) + rξφ′(ξ) +Rpφ−Rξφ′(ξ) = 0. (5)
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Remember we need (1− µ)uy − ux ≤ 0; in terms of φ this restriction reads

(1− µ)
[
pφ(ξ)− ξφ′(ξ)

]
− φ′(ξ) ≤ 0. (6)

The parameter restriction assures that this is true “initially”, at ξ = µ− 1. We may treat
(4) and (5) as an initial-value problem for φ, but we must stop when (6) reaches 0. This
determines a critical value of ξ, which we named named h0 in the first bullet. For ξ > h0

the value of φ is determined by extending u to the “transfer from money-market” region so
it is constant on lines (1− µ)x+ y = constant, i.e. so that (1− µ)uy − ux = 0.

To show that this u is really the value function (and that the associated policy is optimal)
we have only to check that it satisfies the hypotheses of the verification theorem. This takes
a bit of work:

• To show that u ≥ 0 we note that φ(µ − 1) > 0, and (6) gives (1 − µ)pφ(ξ) <
(1+ξ(1−µ))φ′(ξ). We have ξ ≥ µ−1, so 1+ξ(1−µ) > 0, so φ′ > 0 for µ−1 < ξ < h0.
This shows u ≥ 0 in the “no transaction” region. Its positivity in the “transfer from
money-market” region follows immediately.

• To show that −u + 1−p
p u

p/(p−1)
x + rxux + Ryuy ≤ 0 in the “transfer from money-

market” region, one takes advantage of the fact that this holds at the line x = h0y,
the fact that since u is constant along each line (1 − µ)x + y = constant, so are ux
and uy. (Details left to you.)

• We need not verify that (1− µ)uy − ux ≤ 0, since this is clear from the construction
of φ.

• The final inequality (1−µ)ux−uy ≤ 0 is obvious in the “transfer from money market”
region, since there we have (1−µ)uy−ux = 0. It should hold in the “no transaction”
region too, and I’m sure it does (from Shreve, Soner, and Xu), but I don’t yet see the
proof. In terms of φ the task is to show that

[(1− µ) + ξ]φ′(ξ)− pφ(ξ) ≤ 0 for µ− 1 ≤ ξ ≤ h0. (7)

This inequality is readily checked at the endpoints ξ = µ − 1 and ξ = h0, where we
already have explicit formulas or relations between φ and φ′. But why does it hold
in between? (The corresponding step in Shreve, Soner, and Xu uses concavity of the
utility function. Is (7) a convex function of ξ?)
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