PDE for Finance - Homework 5, distributed 4/14/99, due 4/28/99. NO EXTENSIONS

1) Consider the linear heat equation $f_{t}-f_{x x}=0$ in one space dimension, with "Heaviside function" initial data

$$
f(x, 0)= \begin{cases}0 & \text { if } x<0 \\ 1 & \text { if } x>0\end{cases}
$$

Show by evaluating the solution formula that

$$
f(x, t)=\frac{1}{2}[1+\phi(x / \sqrt{4 t})]
$$

where ϕ is the "error function"

$$
\phi(s)=\frac{2}{\sqrt{\pi}} \int_{0}^{s} e^{-r^{2}} d r .
$$

2) Consider the linear heat equation $f_{t}-\Delta f=0$ in R^{n}, with continuous initial data $f_{0}(x)$ at $t=0$.
(a) Show that if f_{0} is uniformly bounded $\left(\left|f_{0}(x)\right| \leq M\right.$ for all $\left.x \in R^{n}\right)$ then $f(x, t) \rightarrow 0$ as $t \rightarrow \infty$.
(b) Show, by giving a counterexample, that if f_{0} is not uniformly bounded the conclusion of (a) can be false.
3) Consider the Black-Scholes PDE

$$
u_{t}+\frac{1}{2} \sigma^{2} s^{2} u_{s s}+r s u_{s}-r u=0
$$

with final value

$$
u(s, T)=\Phi(s) .
$$

If you know some finance, you know that $u(s, t)$ gives the time- t value of a European option with maturity T and payoff Φ, when the time- t value of the underlying asset is s. Here r is the risk-free rate and σ is the volatility of the underlying asset, both assumed constant.
(a) Show using the Feynman-Kac formula that this is the PDE describing

$$
u(s, t)=E_{y(t)=s}\left[e^{-r(T-t)} \Phi(y(T))\right]
$$

where y solves the stochastic differential equation

$$
d y=r y d t+\sigma y d w .
$$

(b) We know (using Ito's lemma) that $y(t)=e^{z(t)}$ where

$$
d z=\left(r-\frac{1}{2} \sigma^{2}\right) d t+\sigma d w
$$

Deduce using the Feynman-Kac formula that the function $v(x, t)$ defined by $v(x, t)=$ $u\left(e^{x}, t\right)$ solves the constant-coefficient PDE

$$
v_{t}+\frac{1}{2} \sigma^{2} v_{x x}+\left(r-\frac{1}{2} \sigma^{2}\right) v_{x}-r v=0
$$

with final value $v(x, T)=\Phi\left(e^{x}\right)$.
(c) Show there exist constants α and β such that $w(x, t)=e^{\alpha x+\beta t} v(x, t)$ solves the backward-in-time linear heat equation

$$
w_{t}+\frac{1}{2} \sigma^{2} w_{x x}=0
$$

4) Consider the linear heat equation $f_{t}-f_{x x}=0$ on the half-line $x>0$, with boundary condition $f(0, t)=0$. Assume the initial data $f_{0}(x)=f(x, t)$ satisfies $f_{0}(0)=0$. Show the solution is

$$
f(x, t)=\frac{1}{\sqrt{4 \pi t}} \int_{0}^{\infty} f_{0}(z)\left(e^{-(x-z)^{2} /(4 t)}-e^{-(x+z)^{2} /(4 t)}\right) d z
$$

(Hint: consider the initial value problem on R, with the odd extension of f_{0} as initial data; show its solution vanishes at $x=0$ for all $t>0$.) [Comment: this solution formula, together with a reduction like that of Problem 3, leads to explicit values for European-style barrier options.]
5) Consider once again the linear heat equation $f_{t}-f_{x x}=0$ on the half-line $x>0$. This time we take the initial data to be zero $(f(x, 0)=0)$ and we specify nonzero boundary data $f(0, t)=g(t)$ with $g(0)=0$. Show that

$$
f(x, t)=\frac{x}{\sqrt{4 \pi}} \int_{0}^{t} \frac{1}{(t-r)^{3 / 2}} e^{\frac{-x^{2}}{4(t-r)}} g(r) d r
$$

(Hint: consider the function $h(x, t)=f(x, t)-g(t)$, extended to $x<0$ by odd reflection.)
6) Consider the initial-boundary-value problem for

$$
u_{t}=a(x, t) u_{x x}+b(x, t) u_{x}+c(x, t) u
$$

with x in the interval $D=(0,1)$ and $0<t<T$. We assume that u, a, b, and c are sufficiently smooth, and that $a(x, t)>0$.
(a) Show that if $c<0$ for all x and t then $|u|$ achieves its maximum at the "initial boundary" $t=0$ or at the "spatial boundary" $x=0,1$. (Hint: start by showing that a positive maximum cannot be achieved in the interior or at the final boundary.)
(b) Show more generally that even if $M=\max _{x, t} c(x, t)$ is positive,

$$
|u(x, t)| \leq A e^{M t}
$$

where A is the maximum of $|u|$ at the initial and spatial boundaries. (Hint: what differential equation does $e^{-M t} u(x, t)$ satisfy?.)

