PDE for Finance — Homework 5, distributed 4/14/99, due 4/28/99.
NO EXTENSIONS

1) Consider the linear heat equation f; — f, = 0 in one space dimension, with “Heaviside

function” initial data
0 fz<0

f("’“"’o):{ 1 ifz>0.

Show by evaluating the solution formula that

Flot) = 3 [1 4+ 6(e/VaD)|

where ¢ is the “error function”
2 s
P(s) = \/7_7/0 e dr.

2) Consider the linear heat equation f; — Af = 0 in R", with continuous initial data fy(x)
at t = 0.

(a) Show that if fy is uniformly bounded (|fo(z)| < M for all x € R™) then f(x,t) — 0

as t — oo.

(b) Show, by giving a counterexample, that if fj is not uniformly bounded the conclusion
of (a) can be false.

3) Consider the Black-Scholes PDE
ur + %0282%3 +rsus —ru =20

with final value
u(s, T) = P(s).

If you know some finance, you know that u(s,t) gives the time-t value of a European option
with maturity 7" and payoff ®, when the time-t value of the underlying asset is s. Here r is
the risk-free rate and o is the volatility of the underlying asset, both assumed constant.

(a) Show using the Feynman-Kac formula that this is the PDE describing

u(s, 1) = By, [T D0 (y(T)]
where y solves the stochastic differential equation

dy = rydt + oydw.



(b) We know (using Ito’s lemma) that y(t) = e*(*) where
dz = (r — %02)dt + odw.

Deduce using the Feynman-Kac formula that the function v(z,t) defined by v(zx,t) =
u(e”, t) solves the constant-coefficient PDE

v + %U%m + (r— %az)vz —rv=0

with final value v(z,T) = ®(e”).

(c) Show there exist constants a and (3 such that w(z,t) = e Py (x,t) solves the
backward-in-time linear heat equation

2
we + %O’ Wye = 0.

4) Consider the linear heat equation f; — fyz = 0 on the half-line z > 0, with boundary
condition f(0,¢) = 0. Assume the initial data fo(z) = f(z,t) satisfies fp(0) = 0. Show the
solution is

! = —\z—=2 —(z+2
fla,t) = \/th/o fo(z) (e (@-2)2/(at) _ ,—(a+ )2/(4t)> &,

(Hint: consider the initial value problem on R, with the odd extension of fj as initial data;
show its solution vanishes at x = 0 for all ¢ > 0.) [Comment: this solution formula, together
with a reduction like that of Problem 3, leads to explicit values for European-style barrier
options.]

5) Consider once again the linear heat equation f; — f;, = 0 on the half-line x > 0. This
time we take the initial data to be zero (f(x,0) = 0) and we specify nonzero boundary data
f£(0,t) = g(t) with g(0) = 0. Show that

_z2

f(z,t) = ’ /t ! e*t=r) g(r)dr
U Var Jo (t—1r)3/2 g '

(Hint: consider the function h(z,t) = f(z,t) — g(t), extended to z < 0 by odd reflection.)

6) Consider the initial-boundary-value problem for
ur = a(x, t)ugy + b(z, t)uy + c(x, t)u

with z in the interval D = (0,1) and 0 < ¢ < T. We assume that u, a, b, and c are
sufficiently smooth, and that a(z,t) > 0.

(a) Show that if ¢ < 0 for all z and ¢ then |u| achieves its maximum at the “initial
boundary” ¢t = 0 or at the “spatial boundary” x = 0,1. (Hint: start by showing that
a positive maximum cannot be achieved in the interior or at the final boundary.)

(b) Show more generally that even if M = max, ; c(z,t) is positive,
lu(z, t)| < AeM!

where A is the maximum of |u| at the initial and spatial boundaries. (Hint: what
differential equation does e Mty (z,t) satisfy?.)



