
PDE for Finance – Homework 5, distributed 4/14/99, due 4/28/99.
NO EXTENSIONS

1) Consider the linear heat equation ft − fxx = 0 in one space dimension, with “Heaviside
function” initial data

f(x, 0) =

{
0 if x < 0
1 if x > 0.

Show by evaluating the solution formula that

f(x, t) =
1
2

[
1 + φ(x/

√
4t)
]

where φ is the “error function”

φ(s) =
2√
π

∫ s

0
e−r

2
dr.

2) Consider the linear heat equation ft −∆f = 0 in Rn, with continuous initial data f0(x)
at t = 0.

(a) Show that if f0 is uniformly bounded (|f0(x)| ≤ M for all x ∈ Rn) then f(x, t) → 0
as t→∞.

(b) Show, by giving a counterexample, that if f0 is not uniformly bounded the conclusion
of (a) can be false.

3) Consider the Black-Scholes PDE

ut + 1
2σ

2s2uss + rsus − ru = 0

with final value
u(s, T ) = Φ(s).

If you know some finance, you know that u(s, t) gives the time-t value of a European option
with maturity T and payoff Φ, when the time-t value of the underlying asset is s. Here r is
the risk-free rate and σ is the volatility of the underlying asset, both assumed constant.

(a) Show using the Feynman-Kac formula that this is the PDE describing

u(s, t) = Ey(t)=s

[
e−r(T−t)Φ(y(T ))

]
where y solves the stochastic differential equation

dy = rydt+ σydw.
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(b) We know (using Ito’s lemma) that y(t) = ez(t) where

dz = (r − 1
2σ

2)dt+ σdw.

Deduce using the Feynman-Kac formula that the function v(x, t) defined by v(x, t) =
u(ex, t) solves the constant-coefficient PDE

vt + 1
2σ

2vxx + (r − 1
2σ

2)vx − rv = 0

with final value v(x, T ) = Φ(ex).

(c) Show there exist constants α and β such that w(x, t) = eαx+βtv(x, t) solves the
backward-in-time linear heat equation

wt + 1
2σ

2wxx = 0.

4) Consider the linear heat equation ft − fxx = 0 on the half-line x > 0, with boundary
condition f(0, t) = 0. Assume the initial data f0(x) = f(x, t) satisfies f0(0) = 0. Show the
solution is

f(x, t) =
1√
4πt

∫ ∞
0

f0(z)
(
e−(x−z)2/(4t) − e−(x+z)2/(4t)

)
dz.

(Hint: consider the initial value problem on R, with the odd extension of f0 as initial data;
show its solution vanishes at x = 0 for all t > 0.) [Comment: this solution formula, together
with a reduction like that of Problem 3, leads to explicit values for European-style barrier
options.]

5) Consider once again the linear heat equation ft − fxx = 0 on the half-line x > 0. This
time we take the initial data to be zero (f(x, 0) = 0) and we specify nonzero boundary data
f(0, t) = g(t) with g(0) = 0. Show that

f(x, t) =
x√
4π

∫ t

0

1
(t− r)3/2

e
−x2

4(t−r) g(r)dr.

(Hint: consider the function h(x, t) = f(x, t)− g(t), extended to x < 0 by odd reflection.)

6) Consider the initial-boundary-value problem for

ut = a(x, t)uxx + b(x, t)ux + c(x, t)u

with x in the interval D = (0, 1) and 0 < t < T . We assume that u, a, b, and c are
sufficiently smooth, and that a(x, t) > 0.

(a) Show that if c < 0 for all x and t then |u| achieves its maximum at the “initial
boundary” t = 0 or at the “spatial boundary” x = 0, 1. (Hint: start by showing that
a positive maximum cannot be achieved in the interior or at the final boundary.)

(b) Show more generally that even if M = maxx,t c(x, t) is positive,

|u(x, t)| ≤ AeMt

where A is the maximum of |u| at the initial and spatial boundaries. (Hint: what
differential equation does e−Mtu(x, t) satisfy?.)
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