PDE for Finance - Homework 4, distributed 3/24/99, due 4/7/99.

1) [Oksendal, Problem 4.5]. Consider

$$
\beta_{k}(t)=E\left[w^{k}(t)\right]
$$

where $w(t)$ is Brownian motion (with $w(0)=0$). Show using Ito's formula that for $k=$ $2,3, \ldots$,

$$
\beta_{k}(t)=\frac{1}{2} k(k-1) \int_{0}^{t} \beta_{k-2}(s) d s .
$$

Deduce that $E\left[w^{4}(t)\right]=3 t^{2}$. What is $E\left[w^{6}(t)\right]$? (The moments of w can also be calculated from its distribution function, since $w(t)$ is Gaussian with mean 0 and variance 1. But the method in this problem is easier, and good practice with Ito's lemma.)
2) [Oksendal, Problem 4.13]. Let y solve

$$
d y=f(t) d t+d w
$$

and define

$$
z(t)=\exp \left(-\int_{0}^{t} f d w-\frac{1}{2} \int_{0}^{t} f^{2}(r) d r\right)
$$

Show that $E[y(t) z(t)]$ is independent of time. (This is a special case of Girsanov's theorem.)
3) [Oksendal Problem 5.6] Solve the scalar stochastic differential equation

$$
d y=\mu d t+\sigma y d w
$$

when μ and σ are constant. [Hint: multiply the equation by the "integrating factor" $\exp \left(-\sigma w+\frac{1}{2} \sigma^{2} t\right)$.]
4) Consider the mean-reverting Ornstein-Uhlenbeck process

$$
d r=a(b-r) d t+\sigma d w
$$

where a, b, and σ are constants. Find the mean $E[r(t)]$ and the variance $E\left[(r-E[r(t)])^{2}\right]$.
5) [A lot like Oksendal Problem 7.1]. Find the backward Kolmogorov equation associated with each process:
(a) The Ornstein-Uhlenbeck process $d y=\mu y d t+\sigma d w$.
(b) The Cox-Ingersoll-Ross interest rate model $d r=a(b-r) d t+\sigma \sqrt{r} d w$.
(c) The vector-valued process $d y_{i}=r_{i} y_{i} d t+y_{i} \sum_{j} \alpha_{i j} d w_{j}$.
[Comment on (b): the attraction of this model is that r stays positive, if $a b>\sigma^{2} / 2$; Exercise 34 of Lamberton \& Lapeyre sketches a proof.]
6) [Approximately Oksendal's Problem 7.2]. Find the stochastic differential equation for which each is the backward Kolmogorov equation:
(a) $u_{t}+u_{x}+u_{x x}=0$
(b) $u_{t}+\mu x u_{x}+\frac{1}{2} \alpha^{2} x^{2} u_{x x}=0$
(c) $u_{t}+2 x_{2} \frac{\partial u}{\partial x_{1}}+\log \left(1+|x|^{2}\right) \frac{\partial u}{\partial x_{2}}+\frac{1}{2}\left(1+x_{1}^{2}\right) \frac{\partial^{2} u}{\partial x_{1}^{2}}+x_{1} \frac{\partial^{2} u}{\partial x_{1} \partial x_{2}}+\frac{1}{2} \frac{\partial^{2} u}{\partial x_{2}^{2}}=0$.
7) Let D be a region in R^{n}, and consider

$$
\begin{aligned}
u(x, t)= & \text { Probability that a Brownian particle starting from } x \in D \\
& \text { at time } t \text { reaches } \partial D \text { before time } T .
\end{aligned}
$$

What partial differential equation does u solve? (Be sure to specify the final-time and boundary conditions.)

