
PDE for Finance – Homework 3, distributed 2/24/99, due 3/24/99.

1) This problem refers to Section 3 of the notes, subsection “Optimal portfolio selection
and consumption,” which gives Merton’s explicit solution to the portfolio selection and
consumption problem when the utility of consumption is h(c) = cγ .

(a) Examine the infinite-time-horizon limit of our solution (T → ∞ with t and x held
fixed). Show that it solves the stationary (time-independent) Hamilton-Jacobi equa-
tion. What is the optimal infinite-time-horizon investment policy?

(b) Find the analogous explicit (time-dependent) solution when the utility of consumption
is h(c) = log c. (Hint: this is essentially the γ → 0 limit of the case h(c) = cγ . Why?)

2) This problem develops a continuous-time analogue of the simple Bertsimas & Lo model
of “Optimal control of execution costs” presented in Section 3 of the notes. The state is
(w, p), where w is the number of shares yet to be purchased and p is the current price per
share. The control α(s) is the rate at which shares are purchased. The state equation is:

dw = −αds for t < s < T , w(t) = w0

dp = θα ds+ σdz for t < s < T , p(t) = p0

where dz is Brownian motion and θ, σ are fixed constants. The goal is to minimize, among
(nonanticipating) controls α(s), the expected cost

E

{∫ T

t
[p(s)α(s) + θα2(s)] ds+ [p(T )w(T ) + θw2(T )]

}
.

The optimal expected cost is the value function u(w0, p0, t).

(a) Show that the HJB equation for u is

ut +H(uw, up, p) +
σ2

2
upp = 0

for t < T , with Hamiltonian

H(uw, up, p) = − 1
4θ

(p+ θup − uw)2.

The final value is of course

u(w, p, T ) = pw + θw2.

(b) Look for a solution of the form u(w, p, t) = pw + g(t)w2. Show that g solves

ġ =
1
4θ

(θ − 2g)2

for t < T , with g(T ) = θ. Notice that u does not depend on σ, i.e. setting σ = 0 gives
the same value function.
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(c) Solve for g.

(d) Show by direct examination of your solution that the optimal α(s) is constant.

(e) Give another proof that the optimal α(s) is constant, by examining the deterministic
version of this control problem (σ = 0) and arguing as we did for the Hopf-Lax
formula.

(Remark: a better choice of objective would be E
{∫ T

t [p(s)α(s) + θ′α2(s)] ds+ [p(T )w(T ) + θ′′w2(T )]
}

for some constants θ′, θ′′, since the state equation gives θ units of dollars/(share)2, whereas
the units of θ′ and θ′′ are different. Food for thought: what happens if one takes the running
cost to be

∫ T
t p(s)α(s) ds instead of

∫ T
t p(s)α(s) + θα2(s) ds?)

3) Problem 6 of Homework 1 was a special case of the deterministic “linear quadratic
regulator” problem. Here is the analogous stochastic problem. The state is y(s) ∈ Rn, and
the control is α(s) ∈ Rn. There is no pointwise restriction on the possible value of α(s).
The evolution law is

dy = (Ay + α)ds+ εdw,

where w is a vector-valued Brownian motion (each component is a scalar-valued Brownian
motion, and different components are independent). The initial condition is y(t) = x, and
the goal is to minimize (among nonanticipating controls) the expected cost

Ey(t)=x

{∫ T

t
[|y(s)|2 + |α(s)|2] ds+ |y(T )|2

}
.

The interpretation is similar to the deterministic case: we prefer y = 0 for t < s < T and at
the final time T , but we also prefer not to use too much control. The new element is that
the state keeps getting jostled by the noise εdw.

(a) Find the associated HJB equation. Explain why the relation α(s) = −1
2∇u(y(s), s)

should hold for the optimal control. (Same relation as in the deterministic case!)

(b) Look for a solution of the form

u(x, t) = 〈K(t)x, x〉+ q(t)

where K(t) is symmetric-matrix-valued and q(t) is scalar-valued. Show that this u
solves the HJB equation exactly if

dK

dt
= K2 − I − (KTA+ATK) for t < T, K(T ) = I

(same as the deterministic case), and

dq

dt
= −ε2trK(t) for t < T, q(T ) = 0.

(c) Show that K(t) is positive definite. (Hint: its quadratic form is the value function of
the deterministic control problem.) Conclude that q(t) > 0 for t < T .
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(d) Show by a verification argument that this u is indeed the value function of the control
problem. (Hint: argue as in the Section 3 addendum.)

(Remark: in this setting the control law for the stochastic case, α(s) = −K(s)y(s), is the
same as for the deterministic one. However the expected cost is higher due to the term
q(t).)

4) Here is the discrete-time analogue of the preceding problem. The state at step k is
yk ∈ Rn, and the control at step k is αk ∈ Rn. There is no pointwise restriction on the
possible values of αk. The evolution law is

yk+1 = Ayk + αk + ek

where the ek’s are independent, identically distributed random variables with mean value 0
and finite variance. We emphasize that ek is independent of yk and αk. The initial condition
is y0 = x, and the goal is to minimize the expected cost

Ey0=x

{
N−1∑
k=0

[|yk|2 + |αk|2] + |yN |2
}
.

Let Jk(x) be the minimum expected cost if the initial stage is k and the initial state is x.
Observe that JN (x) = |x|2.

(a) Write the Bellman equation relating Jk to Jk+1.

(b) Look for a solution of the form Jk(x) = 〈Kkx, x〉+qk, where Kk is a symmetric matrix
and qk is a scalar. Show that Kk satisfies the following recurrence relation:

Kk = AT
[
Kk+1 −Kk+1(Kk+1 + I)−1Kk+1

]
A+ I

with KN = I. How is (the optimal) αk related to yk? What is the value of qk?

(Remark: For much more about the discrete-time LQR problem see section 2.1 of Bertsekas.)

5) [from Bertsekas: chapter 2, problem 10]. You want to sell a house. An offer comes
at the beginning of each day. Successive offers are independent, and each offer is xj with
probability pj , j = 1, . . . , n. (This fixes the probability distribution of the offers.) An offer
not immediately accepted is not lost, but may be accepted at any later date. A maintenance
cost c is incurred for each day that the house remains unsold. You wish to maximize your
(undiscounted) sale price minus your maintenance costs. Assume the house must be sold
on or before day N . Characterize the optimal policy.

6) [from Bertsekas: chapter 2, problem 12]. A gambler plays a game in which he may at
each time k stake any amount uk ≥ 0 that does not exceed his current fortune xk (defined
to be his initial capital plus his gain or minus his loss thus far). He wins his stake back and
as much more with probability p, where 1

2 < p < 1, and he loses his stake with probability
(1 − p). Look for the strategy that maximizes E{log xN}, where xN is his fortune after
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N plays. Show that the optimal choice is to stake, at each play, 2p − 1 times the current
fortune (i.e. uk = (2p− 1)xk).

7) [from Bertsekas: chapter 2, problem 19]. A driver is looking for a parking place on
the way to his destination. Each parking place is free with probability p, independent of
whether other parking spaces are free or not. The driver cannot observe whether a parking
place is free until he reaches it. If he parks k places from his destination, he incurs a cost
k. If he reaches the destination without having parked the cost is C.

(a) Let Fk be the minimal expected cost if he is k parking places from his destination.
Show that

F0 = C

Fk = pmin[k, Fk−1] + qFk−1, k = 1, 2, . . .

where q = 1− p.

(b) Show that an optimal policy is of the form: never park if k ≥ k∗, but take the first
free place if k < k∗, where k is the number of parking places from the destination,
and k∗ is the smallest integer i satisfying qi−1 < (pC + q)−1.
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