PDE for Finance - Homework 2, distributed 2/10/99, due 2/24/99.

1) Let Ω be the square $(-1,1) \times(-1,1)$ in R^{2}, and for $x \in \Omega$ consider $u(x)=\operatorname{dist}(x, \partial \Omega)$. Show, directly from the definition, that u is a viscosity solution of $|\nabla u|=1$ in the sense that

$$
\begin{aligned}
& u-\phi \text { has a local } \max \Rightarrow|\nabla \phi|-1 \leq 0 \\
& u-\phi \text { has a local } \min \Rightarrow|\nabla \phi|-1 \geq 0
\end{aligned}
$$

(We use here the usual shorthand: ϕ is smooth, the local min or max is achieved at some point x_{0}, and the condition on $\nabla \phi$ is to hold at the same x_{0}.)
2) When defining the viscosity solution of a time-independent Hamilton-Jacobi equation such as $|\nabla u|=1$, it is natural to wonder which way the inequalities should go. Answer this by relating the value function of a minimum-time problem to that of a finite horizon problem, as follows. Let $u(x)$ be value function of the minimum-time problem with target E, state equation $d y / d s=f(y, \alpha)$, and admissible controls $\alpha(s) \in A$. Let $v(x, t)$ be the value function of the finite horizon problem with the same state equation, the same set of admissible controls, and objective

$$
\min _{\alpha} \int_{t}^{T} h_{E}(y(s)) d s
$$

where

$$
h_{E}(x)= \begin{cases}1 & \text { if } x \notin E \\ 0 & \text { if } x \in E .\end{cases}
$$

Show that v can be expressed in terms of u. Use this to explain the proper definition of a viscosity solution for the Hamilton-Jacobi equation satisfied by u.
3) Consider the solution of

$$
\begin{aligned}
-\epsilon u_{x x}+u_{x}^{2} & =1 \quad \text { for }-1<x<1 \\
u & =0 \quad \text { at } x= \pm 1
\end{aligned}
$$

with $\epsilon>0$. It is known (and you need not prove) that u is smooth.
(a) Show that $u \geq 0$. (Hint: what properties do u_{x} and $u_{x x}$ have at the point where u achieves its minimum?)
(b) Show that the solution is unique. (Hint: a special case of the maximum principle says: if w satisfies $w_{x x}+g(x) w_{x}=0$ for $-1<x<1$ then w achieves its maximum and minimum values at the endpoints $x= \pm 1$. You may use this fact without proving it. We'll discuss such things later in the semester; but the proof in this special case is easy - it requires just one new idea beyond the one you used in (a) - and it can be found in any standard PDE book, for example Evans or John. I encourage you to figure out the proof and/or read up on it.)
(c) Show that $u(x)=u(-x)$, and that u_{x} vanishes only at $x=0$. Conclude that $\left|u_{x}\right| \leq 1$.
(d) Solve for u explicitly, using that $v=u_{x}$ satisfies $-\epsilon v_{x}+v^{2}=1$ for $-1<x<0$ and $v=0$ at $x=0$.
(e) The solution considered above depends on ϵ, so let's call it u_{ϵ}. Show that as $\epsilon \rightarrow 0, u_{\epsilon}$ tends to $1-|x|$.

