
PDE for Finance – Homework 2, distributed 2/10/99, due 2/24/99.

1) Let Ω be the square (−1, 1) × (−1, 1) in R2, and for x ∈ Ω consider u(x) = dist(x, ∂Ω). Show,
directly from the definition, that u is a viscosity solution of |∇u| = 1 in the sense that

u− φ has a local max⇒ |∇φ| − 1 ≤ 0
u− φ has a local min⇒ |∇φ| − 1 ≥ 0.

(We use here the usual shorthand: φ is smooth, the local min or max is achieved at some point x0,
and the condition on ∇φ is to hold at the same x0.)

2) When defining the viscosity solution of a time-independent Hamilton-Jacobi equation such as
|∇u| = 1, it is natural to wonder which way the inequalities should go. Answer this by relating the
value function of a minimum-time problem to that of a finite horizon problem, as follows. Let u(x)
be value function of the minimum-time problem with target E, state equation dy/ds = f(y, α), and
admissible controls α(s) ∈ A. Let v(x, t) be the value function of the finite horizon problem with
the same state equation, the same set of admissible controls, and objective

min
α

∫ T

t

hE(y(s)) ds

where

hE(x) =
{

1 if x /∈ E
0 if x ∈ E.

Show that v can be expressed in terms of u. Use this to explain the proper definition of a viscosity
solution for the Hamilton-Jacobi equation satisfied by u.

3) Consider the solution of

−εuxx + u2
x = 1 for −1 < x < 1
u = 0 at x = ±1.

with ε > 0. It is known (and you need not prove) that u is smooth.

(a) Show that u ≥ 0. (Hint: what properties do ux and uxx have at the point where u achieves
its minimum?)

(b) Show that the solution is unique. (Hint: a special case of the maximum principle says: if w
satisfies wxx + g(x)wx = 0 for −1 < x < 1 then w achieves its maximum and minimum values
at the endpoints x = ±1. You may use this fact without proving it. We’ll discuss such things
later in the semester; but the proof in this special case is easy – it requires just one new idea
beyond the one you used in (a) – and it can be found in any standard PDE book, for example
Evans or John. I encourage you to figure out the proof and/or read up on it.)

(c) Show that u(x) = u(−x), and that ux vanishes only at x = 0. Conclude that |ux| ≤ 1.

(d) Solve for u explicitly, using that v = ux satisfies −εvx + v2 = 1 for −1 < x < 0 and v = 0 at
x = 0.

(e) The solution considered above depends on ε, so let’s call it uε. Show that as ε → 0, uε tends
to 1− |x|.
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