
PDE for Finance – Homework 1, distributed 1/20/99, due 2/3/99.

Problems 1–4 are relatively easy. Problems 5 and 6 are more difficult. Problem 7 is relatively
easy except for the “food for thought” questions at the end.

1) Consider the Hopf-Lax solution formula for the dynamic programming solution to ut +
1
2 |∇u|

2 = 0 with u = g at t = T (presented in the Section 1 notes). Suppose

g(x) =

{
0 for x ∈ E
−∞ for x /∈ E

for some set E. Evaluate the Hopf-Lax formula to find u(x, t).

2) Consider the minimum-cost version of the finite-horizon problem, with dynamical law
dy/ds = f(y(s), α(s)) with y(t) = x and objective minα

{∫ T
t h(y(s), α(s)) ds+ g(y(T )

}
.

The controls are restricted as usual by α(s) ∈ A. Show (by a heuristic argument similar to
those of the Section 1 notes) that the value function satisfies ut +H(x,∇u) = 0 with

H(x, p) = min
a∈A
{f(x, a) · p+ h(x, a)} .

3) Consider the minimum-cost, finite-horizon problem of Problem 2, with two different
choices of the final-time cost g(1) and g(2). Let u(1)(x, t) and u(2)(x, t) be the associated
value functions. Show that

|u(1)(x, t)− u(2)(x, t)| ≤ max
y∈Rn

|g(1) − g(2)|

for every x ∈ R and every t < T . (Thus small changes in g lead only to small changes in
u. The same thing is true, with the same proof, for the finite-horizon utility maximization
problem.)

4) The Section 1 notes give a “minimum time” dynamic programming problem whose value
function solves |∇u| = 1 for x /∈ T with u = 0 at ∂T .

(a) Find a related dynamic programming problem whose value function (if smooth) should
solve |∇u| = 1 for x /∈ T with u = g at ∂T , where g is a specified function on ∂T .

(b) Consider the 2D case, with T a planar region with smooth boundary ∂T . Describe
the optimal controls and paths, if g is smooth and its derivative (with respect to
arc-length) on T satisfies |g′| < 1.

(c) What changes if |g′| is bigger than 1 on some part of ∂T ?

5) Consider the following physically natural minimum-time problem. A 1D particle with
mass 1 has position x1 and velocity x2 at time 0. You can control it by applying a force of
magnitude less then or equal to 1. Your goal is to bring it to rest at the origin as quickly
as possible.
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(a) Show we are considering a minimum-time problem with dynamics

dy1/ds = y2, dy2/ds = α(s),

control α(s) ∈ A = {|a| ≤ 1} and target set T = {0, 0}.

(b) Find the associated Hamilton-Jacobi-Bellman equation.

(c) Show that when a = 1 the state moves along one of the parabolas y1 = 1
2y

2
2 + c.

Similarly, if a = −1 the state moves along one of the parabolas y1 = −1
2y

2
2 + c. From

which starting points can the state move along one of these parabolas and arrive at
y1 = y2 = 0?

(d) Show the following “feedback control” drives any initial state (x1, x2) to (0, 0): take
α(s) to be the following function of the state (y1(s), y2(s)):

α =


−1 if y1 > −1

2y2|y2|
1 if y1 > 0 and y1 = −1

2y2|y2|
1 if y1 < −1

2y2|y2|
−1 if y1 < 0 and y1 = −1

2y2|y2|

(See the figure to visualize this.)

Show moreover that this control achieves value

u(x) =

{
x2 + 2(x1 + x2

2/2)1/2 if x1 ≥ −1
2x2|x2|

−x2 + 2(−x1 + x2
2/2)1/2 if x1 ≤ −1

2x2|x2|

(e) Show by a suitable “verification argument” that the control specified in (d) is optimal.

6) This problem is a special case of the “linear-quadratic regulator” widely used in engi-
neering applications. The state is y(s) ∈ Rn, and the control is α(s) ∈ Rn. There is no
pointwise restriction on the values of α(s). The evolution law is

dy/ds = Ay + α, y(t) = x,

for some constant matrix A, and the goal is to minimize∫ T

t
|y(s)|2 + |α(s)|2 ds+ |y(T )|2.
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(In words: we prefer y = 0 along the trajectory and at the final time, but we also prefer
not to use too much control.)

(a) What is the associated Hamilton-Jacobi-Bellman equation? Explain why we might
expect the relation α(s) = −1

2∇u(y(s)) to hold along optimal trajectories.

(b) Since the problem is quadratic, it’s natural to guess that the value function u(x, t)
takes the form

u(x, t) = 〈K(t)x, x〉

for some symmetric n × n matrix-valued function K(t). Show that this u solves the
Hamilton-Jacobi-Bellman equation exactly if

dK

dt
= K2 − I − (KTA+ATK) for t < T , K(T ) = I

where I is the n× n identity matrix. (Hint: two quadratic forms agree exactly if the
associated symmetric matrices agree.)

(c) Show by a suitable verification argument that this u is indeed the value function of
the control problem.

7) [An example of nonexistence of an optimal control.] Consider the following control
problem: the state is y(s) ∈ R with y(t) = x; the control is α(s) ∈ R; the dynamics is
dy/dt = α; and the goal is

minimize
∫ T

t
y2(s) + (α2(s)− 1)2.

The value function u(x, t) is the value of this minimum.

(a) Show that when x = 0 and t < T , the value is u(0, t) = 0.

(b) Show that when x = 0 and t < T there is no optimal control α(s).

[The focus on x = 0 is only because this case is most transparent; nonexistence occurs for
other (x, t) as well. Food for thought: What is the Hamilton-Jacobi-Bellman equation? Is
there a modified goal leading to the same Hamiltonian and value function, but for which
optimal controls exist?]
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