PDE for Finance — Homework 1, distributed 1/20/99, due 2/3/99.

Problems 1—4 are relatively easy. Problems 5 and 6 are more difficult. Problem 7 is relatively
easy except for the “food for thought” questions at the end.

1) Consider the Hopf-Lax solution formula for the dynamic programming solution to u; +
%|Vu\2 =0 with u = g at t = T (presented in the Section 1 notes). Suppose

(z) = 0 forxekF
=) —c forz¢E

for some set E. Evaluate the Hopf-Lax formula to find u(zx,t).

2) Consider the minimum-cost version of the finite-horizon problem, with dynamical law
dy/ds = f(y(s),a(s)) with y(t) = z and objective min,, {ftT h(y(s),a(s))ds—i—g(y(T)}.
The controls are restricted as usual by «a(s) € A. Show (by a heuristic argument similar to
those of the Section 1 notes) that the value function satisfies u; + H(x, Vu) = 0 with

H(z,p) = min{f(z,a) -p+h(z,a)}.

3) Consider the minimum-cost, finite-horizon problem of Problem 2, with two different
choices of the final-time cost g and ¢®. Let u™(z,t) and u®(z,t) be the associated
value functions. Show that

D (@, 1) = u® (2, )] < max |gV) — g
yeR”

for every z € R and every ¢ < T. (Thus small changes in g lead only to small changes in
u. The same thing is true, with the same proof, for the finite-horizon utility maximization
problem.)

4) The Section 1 notes give a “minimum time” dynamic programming problem whose value
function solves |Vu| =1 for z ¢ 7 with u = 0 at 97 .

(a) Find arelated dynamic programming problem whose value function (if smooth) should
solve |Vu| =1 for x ¢ 7 with u = g at 07, where g is a specified function on 07 .

(b) Consider the 2D case, with 7 a planar region with smooth boundary 97 . Describe
the optimal controls and paths, if g is smooth and its derivative (with respect to
arc-length) on 7 satisfies |¢/| < 1.

(c) What changes if |¢'| is bigger than 1 on some part of 977

5) Consider the following physically natural minimum-time problem. A 1D particle with
mass 1 has position x; and velocity x5 at time 0. You can control it by applying a force of
magnitude less then or equal to 1. Your goal is to bring it to rest at the origin as quickly
as possible.



(a) Show we are considering a minimum-time problem with dynamics
dyi/ds = y2, dyz/ds = a(s),
control a(s) € A = {]a] <1} and target set 7 = {0,0}.
(b) Find the associated Hamilton-Jacobi-Bellman equation.

(c) Show that when a = 1 the state moves along one of the parabolas y; = %y% + c.
Similarly, if @ = —1 the state moves along one of the parabolas y; = —%y% + c. From
which starting points can the state move along one of these parabolas and arrive at
Y1 =y2 =07

(d) Show the following “feedback control” drives any initial state (z1,x2) to (0,0): take
a(s) to be the following function of the state (yi(s),y2(s)):

—1 if y1 > —Juolyel
1 ify; >0and y; = —%y2|y2|
1 if yr < —Fuelye|
—1 ify; <0 and y; :—%y2|y2|

(See the figure to visualize this.)

Show moreover that this control achieves value

u(z) = xo + 2(x1 +az%/2)1/2 if 1 > —%az2|m2|
—x9 + 2(—x1 + 23/2)1/? ifxy < — 2|z

(e) Show by a suitable “verification argument” that the control specified in (d) is optimal.

6) This problem is a special case of the “linear-quadratic regulator” widely used in engi-
neering applications. The state is y(s) € R", and the control is a(s) € R™. There is no
pointwise restriction on the values of «(s). The evolution law is

dy/ds = Ay + o, y(t) ==,

for some constant matrix A, and the goal is to minimize

[ R + lat)P ds + ()P



(In words: we prefer y = 0 along the trajectory and at the final time, but we also prefer
not to use too much control.)

(a)

(b)

()

What is the associated Hamilton-Jacobi-Bellman equation? Explain why we might
expect the relation a(s) = —3Vu(y(s)) to hold along optimal trajectories.

Since the problem is quadratic, it’s natural to guess that the value function u(z,t)
takes the form
u(z,t) = (K (t)z, 2)

for some symmetric n x n matrix-valued function K(¢). Show that this u solves the
Hamilton-Jacobi-Bellman equation exactly if

dK 2 T T
E:K —I—(K"A+A'K) fort<T, KT)=1I
where I is the n x n identity matrix. (Hint: two quadratic forms agree exactly if the
associated symmetric matrices agree.)

Show by a suitable verification argument that this « is indeed the value function of
the control problem.

7) [An example of nonexistence of an optimal control.] Consider the following control
problem: the state is y(s) € R with y(¢t) = x; the control is «a(s) € R; the dynamics is
dy/dt = «; and the goal is

T
minimize /t y2(s) + (a?(s) — 1)%

The value function u(x,t) is the value of this minimum.

(a)
(b)

Show that when x = 0 and ¢ < T, the value is u(0,t) = 0.

Show that when z = 0 and ¢ < T there is no optimal control a(s).

[The focus on z = 0 is only because this case is most transparent; nonexistence occurs for
other (z,t) as well. Food for thought: What is the Hamilton-Jacobi-Bellman equation? Is
there a modified goal leading to the same Hamiltonian and value function, but for which
optimal controls exist?]



