

**PDE I – Problem Set 9.** Distributed 11/12/2014, due in class 11/25/2014.

(1) Consider a solution of the 1D wave equation

$$u_{tt} - u_{xx} = 0$$

with compactly supported initial data

$$u = f \text{ and } u_t = g \text{ at } t = 0.$$

We know that the sum of the “kinetic energy”  $k(t) = \int u_t^2 dx$  and the “potential energy”  $p(t) = \int u_x^2 dx$  is independent of  $t$ . (Note that both are finite, since  $u$  is compactly supported in space at every time.) Show that when  $t$  is sufficiently large these two “energies” are equal, in other words  $k(t) = p(t)$ .

(2) Let  $\alpha$  be constant,  $\alpha \neq -1$ . Consider the wave equation on  $x > 0, t > 0$  with the following data:

$$\begin{aligned} u_{tt} - u_{xx} &= 0 && \text{for } x > 0, t > 0 \\ u_t &= \alpha u_x && \text{at } x = 0 \\ u &= f(x) && \text{at } t = 0 \\ u_t &= g(x) && \text{at } t = 0. \end{aligned}$$

(a) Assume that  $f$  and  $g$  vanish near  $x = 0$ . Give a formula for  $u$ . (Hint: start with  $u = F(x+t) + G(x-t)$ ; find  $F$  and  $G$ .)

(b) What happens when  $\alpha = -1$ ?

(c) Returning to the case  $\alpha \neq -1$ , let’s drop the condition that  $f$  and  $g$  vanish in a neighborhood of  $x = 0$ . What conditions on  $f$  and  $g$  assure that the solution (obtained as in part (a)) is  $C^2$ ?

(3) Consider solutions of  $u_{tt} = \Delta u$  in  $R^3 \times R_+$  which are radially symmetric in  $x$ . Show that the general solution is

$$u = \frac{F(r+t) + G(r-t)}{r}$$

where  $r = |x|$ . Show that for initial data of the special form

$$u = 0, \quad u_t = g(r) \quad \text{at } t = 0$$

(with  $g$  an even function of  $r$ ) the solution is

$$u = \frac{1}{2r} \int_{r-t}^{r+t} \rho g(\rho) d\rho. \tag{1}$$

Consider the case when

$$g(r) = \begin{cases} 1 & 0 < r < a \\ 0 & r > a. \end{cases}$$

Show there is a discontinuity at the origin at time  $t = a$ . (Assume  $u$  is represented by (1), though it is not  $C^2$  so the derivation of this formula is not strictly speaking applicable.)

(4) Let’s look further at the radial solutions of the wave equation discussed in Problem 3.

(a) Let  $G(r) = 1$  for  $r \leq 1$  and 0 for  $r > 1$ . Where is  $u(r, t) = G(r - t)/r$  nonzero? (This solution can be viewed as an “outgoing wave.”)

(b) Discuss the character of  $G(r - t)/r$  for a general function  $G$ .

(c) Let  $F(r) = 1$  for  $r > 100$  and  $F = 0$  for  $r < 100$ . Where is  $u(r, t) = F(r + t)/r$  nonzero? (This solution can be viewed as an “incoming wave.”)

(d) Discuss the character of  $F(r + t)/r$  for a general function  $F$ .

(5) The pde  $u_{tt} - u_{xx} + m^2 u = 0$  with  $m \neq 0$  is known as the (one-dimensional) Klein-Gordon equation.

(a) For what choice of potential energy do we have that the kinetic + potential energy is constant in time?

(b) Show that, as for the wave equation, if at time 0 we have  $u = u_t = 0$  in the interval  $(-a, a)$ , then  $u$  vanishes in the triangle  $\{|x| \leq a - t\}$ .

(6) Let  $u_{tt} = \Delta u$  in  $R^n \times R_+$ . Show that

$$\sigma = \left[ -2u_t \nabla u, (u_t^2 + |\nabla u|^2) \right]$$

is divergence-free (as a vector field in  $R^{n+1}$ ). Use this to show that  $u(x, t)$  depends only on the initial data in the ball  $\{y : |y - x| \leq t\}$ .

(7) Let  $\Omega$  be a bounded domain in  $R^n$ , and suppose  $u$  solves

$$u_{tt} - \Delta u = f(x) \text{ for } x \in \Omega, t > 0.$$

(a) Suppose the boundary condition is  $u = 0$  at  $\partial\Omega$ . Estimate  $e(t) = \frac{1}{2} \int_{\Omega} u_t^2 + |\nabla u|^2 dx$  in terms of its value at time 0, and the  $L^2$  norm of  $f$ . Your answer should have the character of a well-posedness result; in other words, it should show that if  $e(0)$  and  $\|f\|_{L^2}$  are small enough then  $e(t)$  is small. (Hint: start by considering  $\frac{d}{dt}e(t)$ .)

(b) Same question, when the boundary condition is  $du/dn = 0$  at  $\partial\Omega$ .

(c) Can you do something similar when the boundary condition is  $du/dn + au = 0$  with  $a > 0$ ? (Hint: You’ll want to change the definition of  $e(t)$  in this case. The good choice of  $e(t)$  should be independent of time when  $f = 0$ .)