Consider a solution of the 1D wave equation
\[u_{tt} - u_{xx} = 0 \]

with compactly supported initial data
\[u = f \text{ and } u_t = g \text{ at } t = 0. \]

We know that the sum of the “kinetic energy” \(k(t) = \int u_t^2 \, dx \) and the “potential energy” \(p(t) = \int u_x^2 \, dx \) is independent of \(t \). (Note that both are finite, since \(u \) is compactly supported in space at every time.) Show that when \(t \) is sufficiently large these two “energies” are equal, in other words \(k(t) = p(t) \).

Let \(\alpha \) be constant, \(\alpha \neq -1 \). Consider the wave equation on \(x > 0, t > 0 \) with the following data:
\[u_{tt} - u_{xx} = 0 \text{ for } x > 0, t > 0 \]
\[u_t = \alpha u_x \text{ at } x = 0 \]
\[u = f(x) \text{ at } t = 0 \]
\[u_t = g(x) \text{ at } t = 0. \]

(a) Assume that \(f \) and \(g \) vanish near \(x = 0 \). Give a formula for \(u \). (Hint: start with \(u = F(r + t) + G(r - t) \); find \(F \) and \(G \).)

(b) What happens when \(\alpha = -1 \)?

(c) Returning to the case \(\alpha \neq -1 \), let’s drop the condition that \(f \) and \(g \) vanish in a neighborhood of \(x = 0 \). What conditions on \(f \) and \(g \) assure that the solution (obtained as in part (a)) is \(C^2 \)?

Consider solutions of \(u_{tt} = \Delta u \) in \(R^3 \times R_+ \) which are radially symmetric in \(x \). Show that the general solution is
\[u = \frac{F(r + t) + G(r - t)}{r} \]

where \(r = |x| \). Show that for initial data of the special form
\[u = 0, \quad u_t = g(r) \text{ at } t = 0 \]

(with \(g \) an even function of \(r \)) the solution is
\[u = \frac{1}{2r} \int_{r-t}^{r+t} \rho g(\rho) \, d\rho. \quad (1) \]

Consider the case when
\[g(r) = \begin{cases}
1 & 0 < r < a \\
0 & r > a.
\end{cases} \]

Show there is a discontinuity at the origin at time \(t = a \). (Assume \(u \) is represented by (1), though it is not \(C^2 \) so the derivation of this formula is not strictly speaking applicable.)

Let’s look further at the radial solutions of the wave equation discussed in Problem 3.
(a) Let $G(r) = 1$ for $r \leq 1$ and 0 for $r > 1$. Where is $u(r,t) = G(r-t)/r$ nonzero? (This solution can be viewed as an “outgoing wave.”)

(b) Discuss the character of $G(r-t)/r$ for a general function G.

(c) Let $F(r) = 1$ for $r > 100$ and $F = 0$ for $r < 100$. Where is $u(r,t) = F(r+t)/r$ nonzero? (This solution can be viewed as an “incoming wave.”)

(d) Discuss the character of $F(r+t)/r$ for a general function F.

(5) The pde $u_{tt} - u_{xx} + m^2 u = 0$ with $m \neq 0$ is known as the (one-dimensional) Klein-Gordon equation.

(a) For what choice of potential energy do we have that the kinetic + potential energy is constant in time?

(b) Show that, as for the wave equation, if at time 0 we have $u = u_t = 0$ in the interval $(-a,a)$, then u vanishes in the triangle $\{ |x| \leq a-t \}$.

(6) Let $u_{tt} = \Delta u$ in $\mathbb{R}^n \times \mathbb{R}_+$. Show that

$$\sigma = \left[-2 u_t \nabla u, (u_t^2 + |\nabla u|^2 f) \right]$$

is divergence-free (as a vector field in \mathbb{R}^{n+1}). Use this to show that $u(x,t)$ depends only on the initial data in the ball $\{ y : |y-x| \leq t \}$.

(7) Let Ω be a bounded domain in \mathbb{R}^n, and suppose u solves

$$u_{tt} - \Delta u = f(x) \text{ for } x \in \Omega, \ t > 0.$$

(a) Suppose the boundary condition is $u = 0$ at $\partial \Omega$. Estimate $e(t) = \frac{1}{2} \int_{\Omega} u_t^2 + |\nabla u|^2 \, dx$ in terms of its value at time 0, and the L^2 norm of f. Your answer should have the character of a well-posedness result; in other words, it should show that if $e(0)$ and $\|f\|_{L^2}$ are small enough then $e(t)$ is small. (Hint: start by considering $\frac{d}{dt} e(t)$.)

(b) Same question, when the boundary condition is $du/dn = 0$ at $\partial \Omega$.

(c) Can you do something similar when the boundary condition is $du/dn + au = 0$ with $a > 0$? (Hint: You’ll want to change the definition of $e(t)$ in this case. The good choice of $e(t)$ should be independent of time when $f = 0$.)