PDE I - Problem Set 8. Distributed Wed 11/5/2014, due in class 11/18/2014.
(1) Show that if u is a C^{2} harmonic function defined on a region in R^{n}, then

$$
v(x)=|x|^{2-n} u\left(\frac{x}{|x|^{2}}\right)
$$

is harmonic on the region where it is defined. (Hint: while this can be done by writing the Laplacian in polar coordinates, an alternative - in my view easier - argument uses the fact that u is harmonic in a domain Ω if and only if $\int_{\Omega}\langle\nabla u, \nabla \phi\rangle=0$ for all ϕ such that $\phi=0$ at $\partial \Omega$.) [Remark: v is known as the Kelvin transform of u. When we discussed the Green's function of the Laplacian for a half-space and a unit ball, we used the reflection of the fundamental solution around the boundary in the case of a half-space, and the Kelvin transform of the fundamental solution in the case of the unit ball.]
(2) Let's apply the Kelvin transform to the behavior of a harmonic function defined in the complement of a ball.
(a) Suppose u is a uniformly bounded harmonic function defined on $R^{3} \backslash B_{1}=\left\{x \in R^{3}\right.$: $|x|>1$. Assume further that " $u \rightarrow 0$ uniformly at ∞ " in other words that for any $\epsilon>0$ there exists M such that $|x|>M$ implies $|u(x)|<\epsilon$. Show that the Kelvin transform of u has a removable singularity at 0 .
(b) Using the conclusion of part (a), show there is a constant C (depending on u) such that $|u(x)| \leq C|x|^{-1}$ and $|\nabla u| \leq C|x|^{-2}$ for all sufficiently large $|x|$.
(c) What if u is defined in $R^{3} \backslash B_{a}$ for some $a \neq 1$. (Hint: rescale the preceding results.)
(d) Are similar results true in R^{n} for $n>3$? What about in R^{2} ?
(3) Consider the quadrant $\{x>0, y>0\}$ in the $x-y$ plane. What is the Green's function of the Laplacian in this domain?
(4) We know a variational principle for solving the Neumann boundary value problem $\Delta u=f$ in Ω with $\partial u / \partial n=g$ at $\partial \Omega$ provided f and g are consistent. (For the record: it is to minimize $\int_{\Omega} \frac{1}{2}|\nabla u|^{2}+f u d x-\int_{\partial \Omega} g u d A$ over all $u: \Omega \rightarrow R$; recall that the boundary condition $\partial u / \partial n=g$ is a consequence of the first variation being zero at u.) This problem shows that one cannot solve that PDE problem by instead imposing the boundary condition as a constraint. For simplicity let's work in 1D, taking $\Omega=(0,1)$; and let's take $f=0$. Here's the question: show that for an $a, b \in R$, the (misguided) variational problem

$$
\min _{u_{x}(0)=a, u_{x}(1)=b} \int_{0}^{1} u_{x}^{2}
$$

has minimum value 0 . [Food for thought: why is it OK to fix $\left.u\right|_{\partial \Omega}$, as we do for a Dirichlet boundary condition, though this problem shows that it is not OK to fix $\partial u /\left.\partial n\right|_{\partial \Omega}$?]
(5) Use the convexity of

$$
E[u]=\int_{\Omega} \frac{1}{2}|\nabla u|^{2}+\frac{1}{4} u^{4} d x
$$

to prove that there can be at most one solution of $-\Delta u+u^{3}=0$ in Ω with a given Dirichlet boundary condition $u=g$ at $\partial \Omega$.
(6) Here is another example of a variational principle that leads to a PDE. Let Ω be a bounded domain in R^{n}, and consider the variational problem

$$
\min _{\int_{\Omega} u d x=0} \frac{\int_{\Omega}|\nabla u|^{2}}{\int_{\Omega} u^{2}} .
$$

Assume that a minimizer exists and is C^{2}. Show that it must be a Neumann eigenfunction of the Laplacian, i.e. a nonzero solution of

$$
-\Delta u=\lambda u \quad \text { in } \Omega, \text { with } \partial u / \partial n=0 \text { at } \partial \Omega .
$$

Conclude that the minimum value of this variational problem is equal to the smallest nonzero Neumann eigenvalue.
(7) A question about the finite element method:
(a) Explain why if u and v are piecewise linear on $[0,1]$, determined by their nodal values u_{j}, v_{j} at $x_{j}=j / N$, then integration gives

$$
\int_{0}^{1} u v d x=\frac{1}{N}\langle K \vec{u}, \vec{v}\rangle
$$

where K is a symmetric matrix, $\vec{u}=\left(u_{0}, u_{1}, \ldots, u_{N}\right)$ and $\vec{v}=\left(v_{0}, v_{1}, \ldots, v_{N}\right)$. What is K ?
(b) With the same notation as in (a), express $\int_{0}^{1} u_{x}^{2} d x$ in terms of the nodal values of u.

