
PDE I – Problem Set 8. Distributed Wed 11/5/2014, due in class 11/18/2014.

(1) Show that if u is a C2 harmonic function defined on a region in Rn, then

v(x) = |x|2−nu

(
x

|x|2
)

is harmonic on the region where it is defined. (Hint: while this can be done by writing
the Laplacian in polar coordinates, an alternative – in my view easier – argument uses the
fact that u is harmonic in a domain Ω if and only if

∫
Ω〈∇u,∇φ〉 = 0 for all φ such that

φ = 0 at ∂Ω.) [Remark: v is known as the Kelvin transform of u. When we discussed the
Green’s function of the Laplacian for a half-space and a unit ball, we used the reflection of
the fundamental solution around the boundary in the case of a half-space, and the Kelvin
transform of the fundamental solution in the case of the unit ball.]

(2) Let’s apply the Kelvin transform to the behavior of a harmonic function defined in the com-
plement of a ball.

(a) Suppose u is a uniformly bounded harmonic function defined on R3 \ B1 = {x ∈ R3 :
|x| > 1. Assume further that “u→ 0 uniformly at ∞” in other words that for any ε > 0
there exists M such that |x| > M implies |u(x)| < ε. Show that the Kelvin transform of
u has a removable singularity at 0.

(b) Using the conclusion of part (a), show there is a constant C (depending on u) such that
|u(x)| ≤ C|x|−1 and |∇u| ≤ C|x|−2 for all sufficiently large |x|.

(c) What if u is defined in R3 \Ba for some a 6= 1. (Hint: rescale the preceding results.)

(d) Are similar results true in Rn for n > 3? What about in R2?

(3) Consider the quadrant {x > 0, y > 0} in the x− y plane. What is the Green’s function of the
Laplacian in this domain?

(4) We know a variational principle for solving the Neumann boundary value problem ∆u = f
in Ω with ∂u/∂n = g at ∂Ω provided f and g are consistent. (For the record: it is to
minimize

∫
Ω

1
2 |∇u|

2 +fu dx−
∫
∂Ω gu dA over all u : Ω→ R; recall that the boundary condition

∂u/∂n = g is a consequence of the first variation being zero at u.) This problem shows that one
cannot solve that PDE problem by instead imposing the boundary condition as a constraint.
For simplicity let’s work in 1D, taking Ω = (0, 1); and let’s take f = 0. Here’s the question:
show that for an a, b ∈ R, the (misguided) variational problem

min
ux(0)=a, ux(1)=b

∫ 1

0
u2

x

has minimum value 0. [Food for thought: why is it OK to fix u|∂Ω, as we do for a Dirichlet
boundary condition, though this problem shows that it is not OK to fix ∂u/∂n|∂Ω?]

(5) Use the convexity of

E[u] =
∫

Ω

1
2
|∇u|2 +

1
4
u4 dx

to prove that there can be at most one solution of −∆u+ u3 = 0 in Ω with a given Dirichlet
boundary condition u = g at ∂Ω.
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(6) Here is another example of a variational principle that leads to a PDE. Let Ω be a bounded
domain in Rn, and consider the variational problem

min∫
Ω

u dx=0

∫
Ω |∇u|2∫

Ω u
2
.

Assume that a minimizer exists and is C2. Show that it must be a Neumann eigenfunction
of the Laplacian, i.e. a nonzero solution of

−∆u = λu in Ω, with ∂u/∂n = 0 at ∂Ω.

Conclude that the minimum value of this variational problem is equal to the smallest nonzero
Neumann eigenvalue.

(7) A question about the finite element method:

(a) Explain why if u and v are piecewise linear on [0, 1], determined by their nodal values
uj , vj at xj = j/N , then integration gives∫ 1

0
uv dx =

1
N
〈K~u,~v〉

where K is a symmetric matrix, ~u = (u0, u1, . . . , uN ) and ~v = (v0, v1, . . . , vN ). What is
K?

(b) With the same notation as in (a), express
∫ 1

0 u
2
x dx in terms of the nodal values of u.
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