PDE I — Problem Set 6. Distributed Thurs 10/9/2014, due in class 10/28. Problem 4b corrected
10/26 — a constant was missing before.

Please note: You may bring one sheet of notes to the midterm (Tues 10/21). Its scope consists

of: (a

) everything in Lectures 1-5 and Problem Sets 1-5, plus (b) the parts of the Lecture 6 notes

that we covered on 10/7, namely: the fundamental solution of Laplace’s equation (pages 1-7 of
those notes), finite difference approximation for Laplace’s equation (page 13 of those notes), and
the weak form of the maximum principle for Laplace’s equation (page 14 of those notes).

(1)
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(From Evans, Section 2.5.) Adjust the proof of the mean value theorem to show that for
n >3, if —Au= f on B(0,7) and u = g at the boundary, then
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Show that the function ®(z) = —3|z| is a fundamental solution of the 1D Laplacian, in the
sense that for any compactly supported function f: R — R, the function u(z) = [®(z —

y)f(y) dy solves —ug, = f.
One version of the “weak form” of the maximum principle is that:

e if Au > 0in  then u achieves its max at 92, and

e if Au <0 in € then u achieves its min at 0f2,

where Q is a bounded domain in R™. (You should know how to prove these, but I'm not
asking you to write it up.) Using this, find an explicit constant C' such that

max |u| < C'max |f|
B B

when B = B;(0) is the unit ball in R", and u solves the boundary value problem

Au = f in B with v =0 at 0B. (1)

Problem 3 concerns how the maximum principle can be used to prove well-posedness of the
boundary value problem described by eqn (1). This problem concerns how the energy method
gives an alternative approach to well-posedness.

(a) Poincare’s inequality says that if u = 0 at 9 then [ou® < C [, |Vul? (here Q is a
bounded domain in R", and the constant C' depends on €2). Prove it. [Hint: we can
extend u by 0 outside €2, so it’s defined in a cube in R™. Therefore it suffices to prove
the inequality when 2 is a cube.]

(b) Using Poincare’s inequality, show that if u solves eqn (1) then [, |Vu|> < C [, f2. [Hint:
multiply the equation by u and integrate.]



(5) We proved the (weak form of the) maximum principle for harmonic functions on a bounded
domain. When the domain is unbounded an additional hypothesis is needed; for example,
in the halfspace z, > 0 the linear function u(z) = x, is harmonic but doesn’t achieve its
maximum on the boundary. Let’s focus for simplicity on the 2D halfspace Q = {(z1,x2) :
xy > 0}. Show that if u is C? and harmonic on this  and continuous up to the boundary,
and if in addition u is uniformly bounded from above, then maxgu = maxsqu. [Hint: for
€ > 0, consider the harmonic function u(x) — elog(z? + (x2 + 1)2)"/2. Apply the maximum
principle to the region where 2% + (22 + 1)? < a? and z3 > 0, with a sufficiently large. Then
let € — 0.]



