

PDE I – Problem Set 6. Distributed Thurs 10/9/2014, due in class 10/28. *Problem 4b corrected 10/26 – a constant was missing before.*

Please note: You may bring one sheet of notes to the midterm (Tues 10/21). Its scope consists of: (a) everything in Lectures 1-5 and Problem Sets 1-5, plus (b) the parts of the Lecture 6 notes that we covered on 10/7, namely: the fundamental solution of Laplace's equation (pages 1-7 of those notes), finite difference approximation for Laplace's equation (page 13 of those notes), and the weak form of the maximum principle for Laplace's equation (page 14 of those notes).

(1) (From Evans, Section 2.5.) Adjust the proof of the mean value theorem to show that for $n \geq 3$, if $-\Delta u = f$ on $B(0, r)$ and $u = g$ at the boundary, then

$$u(0) = \frac{1}{|\partial B(0, r)|} \int_{\partial B(0, r)} g \, d\text{area} + \frac{1}{n(n-2)\alpha_n} \int_{B(0, r)} \left(\frac{1}{|x|^{n-2}} - \frac{1}{r^{n-2}} \right) f \, d\text{vol}.$$

(2) Show that the function $\Phi(x) = -\frac{1}{2}|x|$ is a fundamental solution of the 1D Laplacian, in the sense that for any compactly supported function $f : R \rightarrow R$, the function $u(x) = \int \Phi(x - y) f(y) dy$ solves $-u_{xx} = f$.

(3) One version of the “weak form” of the maximum principle is that:

- if $\Delta u \geq 0$ in Ω then u achieves its max at $\partial\Omega$, and
- if $\Delta u \leq 0$ in Ω then u achieves its min at $\partial\Omega$,

where Ω is a bounded domain in R^n . (You should know how to prove these, but I'm not asking you to write it up.) Using this, find an explicit constant C such that

$$\max_B |u| \leq C \max_B |f|$$

when $B = B_1(0)$ is the unit ball in R^n , and u solves the boundary value problem

$$\Delta u = f \text{ in } B \text{ with } u = 0 \text{ at } \partial B. \quad (1)$$

(4) Problem 3 concerns how the maximum principle can be used to prove well-posedness of the boundary value problem described by eqn (1). This problem concerns how the energy method gives an alternative approach to well-posedness.

(a) Poincare's inequality says that if $u = 0$ at $\partial\Omega$ then $\int_{\Omega} u^2 \leq C \int_{\Omega} |\nabla u|^2$ (here Ω is a bounded domain in R^n , and the constant C depends on Ω). Prove it. [Hint: we can extend u by 0 outside Ω , so it's defined in a cube in R^n . Therefore it suffices to prove the inequality when Ω is a cube.]

(b) Using Poincare's inequality, show that if u solves eqn (1) then $\int_{\Omega} |\nabla u|^2 \leq C \int_{\Omega} f^2$. [Hint: multiply the equation by u and integrate.]

(5) We proved the (weak form of the) maximum principle for harmonic functions on a bounded domain. When the domain is unbounded an additional hypothesis is needed; for example, in the halfspace $x_n > 0$ the linear function $u(x) = x_n$ is harmonic but doesn't achieve its maximum on the boundary. Let's focus for simplicity on the 2D halfspace $\Omega = \{(x_1, x_2) : x_2 > 0\}$. Show that if u is C^2 and harmonic on this Ω and continuous up to the boundary, and if in addition u is uniformly bounded from above, then $\max_{\Omega} u = \max_{\partial\Omega} u$. [Hint: for $\epsilon > 0$, consider the harmonic function $u(x) - \epsilon \log(x_1^2 + (x_2 + 1)^2)^{1/2}$. Apply the maximum principle to the region where $x_1^2 + (x_2 + 1)^2 < a^2$ and $x_2 > 0$, with a sufficiently large. Then let $\epsilon \rightarrow 0$.]