
PDE I – Problem Set 4. Distributed Thurs 9/25/2014, due Tues 10/07/2014.

(1) Consider the heat equation ut = uxx on R, with the “Heaviside function” as initial data:

u(x, 0) =

{
0 if x < 0
1 if x > 0

(a) Show by integration against the fundamental solution that

u(x, t) = N(x/
√

2t)

where N is the cumulative normal distribution

N(x) =
1√
2π

∫ x

−∞
e−s2/2 ds.

(b) Argue that this calculation is legitimate (i.e. u solves the heat equation, and it has the
desired initial data) although the Heaviside function is neither continuous nor compactly
supported.

(2) Recall that for the heat equation in a bounded domain Ω with the Dirichlet boundary con-
dition u = 0 at ∂Ω, the solution decays exponentially to 0 as t → ∞. Let’s explore what
happens in all space, focusing for simplicity on one space dimension:

ut − uxx = 0 for t > 0, x ∈ R
u = u0(x) at t = 0.

(a) Show that if u0 is bounded and continuous, and
∫∞
−∞ |u0| dx <∞, then

sup
x
|u(x, t)| ≤ Ct−1/2.

What is the optimal value of C?

(b) Show that if u0 = φx with
∫∞
−∞ |φ| dx <∞ then the decay is faster:

sup
x
|u(x, t)| ≤ Ct−1.

What is the optimal value of C in this case?

(3) Our discussion of the heat equation on the half-line x > 0 with a homogeneous Dirichlet
(u = 0 at x = 0) or Neumann (ux = 0 at x = 0) boundary condition used odd or even
reflection. In particular, we used the following assertions:

• If u0 : R→ R is an odd function of x, then the solution of the whole-space heat equation
with initial data u0 is an odd function of x for each t.

• If u0 : R→ R is an even function of x, then the solution of the whole-space heat equation
with initial data u0 is an even function of x for each t.

(a) Give a proof of these assertions based on our solution formula (which gives u(x, t) as the
convolution of u0 with the fundamental solution).
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(b) Give a different proof of these assertions, based on the invariance of the PDE under
reflection and the uniqueness of solutions to the initial value problem in all space. (You
may assume for part (b) that u0 is uniformly bounded, so that the uniqueness result of
HW1 problem 7 is applicable.)

(4) Consider the heat equation in a the first quadrant of R2, i.e.

ut −∆u = 0 for x ∈ Ω, t > 0
u = u0 at t = 0

with Ω = {x1 > 0, x2 > 0}.

(a) Let G(x, y, t) be the Green’s function associated with the homogeneous Dirichlet bound-
ary condition u = 0 at ∂Ω. (By definition, this means that the solution of the PDE with
this boundary condition has the form u(x) =

∫
ΩG(x, y, t)u0(y) dy.) Give a formula for

G.

(b) Let H(x, y, t) be the Green’s function associated with the homogeneous Neumann bound-
ary condition ∂u

∂n = 0. (By definition, this means that the solution of the PDE with this
boundary condition has the form u(x) =

∫
ΩH(x, y, t)u0(y) dy.) Give a formula for H.

(5) Let Ω be a bounded domain in Rn. The Neumann Green’s function N(x, y, t) is the analogue
of the Dirichlet Green’s function, but using the boundary condition ∂u/∂n = 0 at ∂Ω; its
defining property is that the solution of ut −∆u = 0 in Ω with ∂u/∂n = 0 at ∂Ω and u = u0

at t = 0 is u(x, t) =
∫

ΩN(x, y, t)u0(y) dy. (Remark: N(x, y, t) is symmetric in x and y; the
proof is parallel to what we did in class for the Dirichlet Green’s function G(x, y, t).) Show
that the solution of

ut −∆u = 0 for x ∈ Ω, t > 0
∂u/∂n = g for x ∈ ∂Ω

u = 0 at t = 0

is given by

u(x, t) =
∫ t

0

∫
∂Ω
N(x, y, t− s)g(y, s) dy ds.
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