PDE I - Problem Set 3. Distributed Thurs 9/18/2014, due Tues 9/30/2014.
(1) Let Ω be a bounded domain in R^{n}, and consider the semilinear heat equation $u_{t}-\Delta u=u^{5}$ in Ω, with $u=0$ at $\partial \Omega$ and $u=u_{0}(x)$ at $t=0$. Show that if $M_{0}=\max _{x \in \Omega}\left|u_{0}(x)\right|$ and $M(t)$ solves $d M / d t=M^{5}$ with $M(0)=M_{0}$, then $|u(x, t)| \leq M(t)$ for all $x \in \Omega$ and all $t>0$ such that both u and M exist. [Hint: use the maximum principle. Remark: One can show that if u ceases to exist at a finite time $T_{\max }$, then $\max _{x \in \Omega} u(x, t) \rightarrow \infty$ as $t \rightarrow T_{\max }$. Therefore this problem gives a lower bound for $T_{\max }$.]
(2) Suppose u solves

$$
u_{t}-u_{x x}=16 u
$$

on the interval $(0, \pi)$, with the homogeneous Neumann condition $u_{x}=0$ at $x=0, \pi$. Characterize the initial data $u_{0}=u(x, 0)$ for which $u(x, t)$ stays bounded as $t \rightarrow \infty$.
(3) The Lecture 2 notes discuss a continuous-time, discrete-space approximation of $u_{t}=u_{x x}$. When u has a homogeneous Dirichlet boundary condition, the ODE for the nodal values is

$$
\dot{u}_{j}=\frac{u_{j-1}+u_{j+1}-2 u_{j}}{(\Delta x)^{2}} \quad j=1, \ldots, N-1
$$

with the convention that the domain is $(0, N \Delta x)$ and $u_{0}(t)=u_{N}(t)=0$. Let's discuss its convergence as $\Delta x \rightarrow 0$.
(a) Suppose the exact solution has $u_{x x x x}^{\mathrm{pde}}$ bounded (uniformly with respect to space and time). Consider the error $z_{j}(t)=u_{j}(t)-u^{\mathrm{pde}}(j \Delta x, t)$. Show that if we define $\phi_{j}(t)$ by

$$
\begin{equation*}
\dot{z}_{j}-\frac{z_{j-1}+z_{j+1}-2 z_{j}}{(\Delta x)^{2}}=\phi_{j}(t) \tag{1}
\end{equation*}
$$

then we have an estimate of the form $\left|\phi_{j}\right| \leq C(\Delta x)^{2}$, with the constant C depending only on an upper bound for $\left|u_{x x x x}^{\mathrm{pde}}\right|$.
(b) Show that if the RHS of (1) were zero we would have a discrete version of the maximum principle. In other words: show that if $w_{j}(t)(j=1, \ldots, N-1)$ solves the ODE system $\dot{w}_{j}-\frac{w_{j-1}+w_{j+1}-2 w_{j}}{(\Delta x)^{2}}=0$ with the convention $w_{0}(t)=w_{N}(t)=0$, then $\max _{j, t} w_{j}(t)$ and $\min _{j, t} w_{j}(t)$ are achieved either at the initial time $(t=0)$ or the spatial boundary $(j=0$ or $j=N)$.
(c) Apply part (b) to $z_{j} \pm C(\Delta x)^{2} t$ to deduce the error estimate $\left|z_{j}(t)\right| \leq C(\Delta x)^{2} t$.
(4) The Lecture 2 notes also discuss a discrete-time, discrete-space approximation of $u_{t}=u_{x x}$. When u has a homogeneous Dirichlet boundary condition and the domain is $(0, \pi)$, the scheme says

$$
\begin{equation*}
u_{j}\left(t_{n+1}\right)=\alpha u_{j+1}\left(t_{n}\right)+\alpha u_{j-1}\left(t_{n}\right)+(1-2 \alpha) u_{j}\left(t_{n}\right) \tag{2}
\end{equation*}
$$

with the conventions that the spatial step is $\Delta x=\pi / N$, the times are $t_{n}=n \Delta t$,

$$
\alpha=\frac{\Delta t}{(\Delta x)^{2}},
$$

and $u_{0}\left(t_{n}\right)=u_{N}\left(t_{n}\right)=0$ for all n. I told you that this scheme is stable for $\alpha \leq 1 / 2$ and unstable for $\alpha>1 / 2$. Let's understand why.
(a) Assume $0<\alpha \leq 1 / 2$. Show that for any M, if initially $\max _{j}\left|u_{j}(0)\right| \leq M$, then the estimate persists: $\max _{j}\left|u_{j}\left(t_{n}\right)\right| \leq M$ for each $n=1,2, \ldots$. (Thus, the scheme is stable in the sense that a small change in its initial data produces a small change in the solution.)
(b) Suppose $\alpha>1 / 2$. Consider, for any integer k, the initial data $u_{j}(0)=\sin (j k \Delta x)$. (Note that it vanishes at the endpoints $j=0, N$.) Show that the associated solution is

$$
u_{j}\left(t_{n}\right)=\xi^{n} u_{j}(0)
$$

where $\xi=\xi(k)=1-2 \alpha[1-\cos (k \Delta x)]$.
(c) The solution identified in part (b) grows exponentially in magnitude if $|\xi|>1$. Show that if $\alpha>1 / 2$, then such growth happens when $\cos (k \Delta x)$ is close enough to -1 . (Thus, the scheme is unstable in the sense that a small change in its initial data can produce a huge change in the solution after multiple time steps, even at times such that $t_{n}=n \Delta t$ is still quite small.)
(5) The Lecture 3 notes show that if Ω is a bounded domain, the linear heat equation $u_{t}-\Delta u=0$ with boundary condition $u=0$ at $\partial \Omega$ can be interpreted (using the L^{2} inner product) as "steepest descent" for $F[u]=\frac{1}{2} \int_{\Omega}|\nabla u|^{2} d x$ within the class of functions satisfying $u=0$ at $\partial \Omega$. Let's give similar interpretations to some nonlinear PDE's. In both parts (a) and (b), the domain Ω is bounded and the boundary condition is $u=0$ at $\partial \Omega$.
(a) Show that $u_{t}=\Delta u+u^{5}$ is "steepest descent" (with respect to the L^{2} inner product, and within the class of functions that vanish at $\partial \Omega)$ for $G[u]=\int_{\Omega} \frac{1}{2}|\nabla u|^{2}-\frac{1}{6} u^{6} d x$.
(b) Show that $u_{t}=\operatorname{div}\left(|\nabla u|^{2} \nabla u\right)$ is "steepest descent" (with respect to the L^{2} inner product, and within the class of functions that vanish at $\partial \Omega$) for $H[u]=\int_{\Omega} \frac{1}{4}|\nabla u|^{4}$.
(6) Show that if a pde has a time-periodic solution then it cannot have a steepest-descent interpretation.
(7) In Lecture 3 we showed that the "gradient" of $F[u]=\frac{1}{2} \int_{\Omega}|\nabla u|^{2} d x$ in the class of functions satisfying $u=0$ at $\partial \Omega$ (and using the L^{2} inner product) is $-\Delta u$. Now let's consider the same functional, but without imposing any boundary condition on u. Show that in this case ∇F exists at u only if $\partial u / \partial n=0$ at $\partial \Omega$. (Thus: the linear heat equation with the Neumann boundary condition $\partial u / \partial n=0$ at $\partial \Omega$ represents steepest descent for F in the class of functions with no specified boundary condition.)
(8) The Lecture 3 notes discuss "implicit-in-time" discretization of the linear heat equation. [We didn't get to this in class on $9 / 16$; we'll spend a few minutes on it at the start of class $9 / 23$.] Focusing on the discrete-time, continuous-space setting with $u=0$ at the boundary, this scheme chooses $u\left(x, t_{n+1}\right)$ by solving

$$
\frac{u\left(x, t_{n+1}\right)-u\left(x, t_{n}\right)}{\Delta t}=\Delta u\left(x, t_{n+1}\right)
$$

with $u\left(x, t_{n+1}\right)=0$ at $\partial \Omega$. (Please accept that such $u\left(x, t_{n+1}\right)$ exists.) Show that $\int_{\Omega}\left|\nabla u\left(x, t_{n+1}\right)\right|^{2} d x \leq$ $\int_{\Omega}\left|\nabla u\left(x, t_{n}\right)\right|^{2} d x$. [Remark: this no surprise, since in the continuous-time setting the Dirichlet integral is monotonically decreasing. But it provides a first indication of the implicit scheme's robust stability, since we made no assumption about the size of Δt.]

