
PDE I – Problem Set 3. Distributed Thurs 9/18/2014, due Tues 9/30/2014.

(1) Let Ω be a bounded domain in Rn, and consider the semilinear heat equation ut −∆u = u5

in Ω, with u = 0 at ∂Ω and u = u0(x) at t = 0. Show that if M0 = maxx∈Ω |u0(x)| and M(t)
solves dM/dt = M5 with M(0) = M0, then |u(x, t)| ≤ M(t) for all x ∈ Ω and all t > 0 such
that both u and M exist. [Hint: use the maximum principle. Remark: One can show that if
u ceases to exist at a finite time Tmax, then maxx∈Ω u(x, t)→∞ as t→ Tmax. Therefore this
problem gives a lower bound for Tmax.]

(2) Suppose u solves
ut − uxx = 16u

on the interval (0, π), with the homogeneous Neumann condition ux = 0 at x = 0, π. Char-
acterize the initial data u0 = u(x, 0) for which u(x, t) stays bounded as t→∞.

(3) The Lecture 2 notes discuss a continuous-time, discrete-space approximation of ut = uxx.
When u has a homogeneous Dirichlet boundary condition, the ODE for the nodal values is

u̇j =
uj−1 + uj+1 − 2uj

(∆x)2
j = 1, . . . , N − 1

with the convention that the domain is (0, N∆x) and u0(t) = uN (t) = 0. Let’s discuss its
convergence as ∆x→ 0.

(a) Suppose the exact solution has upde
xxxx bounded (uniformly with respect to space and

time). Consider the error zj(t) = uj(t)− upde(j∆x, t). Show that if we define φj(t) by

żj −
zj−1 + zj+1 − 2zj

(∆x)2
= φj(t), (1)

then we have an estimate of the form |φj | ≤ C(∆x)2, with the constant C depending
only on an upper bound for |upde

xxxx|.
(b) Show that if the RHS of (1) were zero we would have a discrete version of the maximum

principle. In other words: show that if wj(t) (j = 1, . . . , N − 1) solves the ODE system
ẇj − wj−1+wj+1−2wj

(∆x)2
= 0 with the convention w0(t) = wN (t) = 0, then maxj,twj(t) and

minj,twj(t) are achieved either at the initial time (t = 0) or the spatial boundary (j = 0
or j = N).

(c) Apply part (b) to zj ± C(∆x)2t to deduce the error estimate |zj(t)| ≤ C(∆x)2t.

(4) The Lecture 2 notes also discuss a discrete-time, discrete-space approximation of ut = uxx.
When u has a homogeneous Dirichlet boundary condition and the domain is (0, π), the scheme
says

uj(tn+1) = αuj+1(tn) + αuj−1(tn) + (1− 2α)uj(tn) (2)

with the conventions that the spatial step is ∆x = π/N , the times are tn = n∆t,

α =
∆t

(∆x)2
,

and u0(tn) = uN (tn) = 0 for all n. I told you that this scheme is stable for α ≤ 1/2 and
unstable for α > 1/2. Let’s understand why.
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(a) Assume 0 < α ≤ 1/2. Show that for any M , if initially maxj |uj(0)| ≤ M , then the
estimate persists: maxj |uj(tn)| ≤ M for each n = 1, 2, . . .. (Thus, the scheme is stable
in the sense that a small change in its initial data produces a small change in the
solution.)

(b) Suppose α > 1/2. Consider, for any integer k, the initial data uj(0) = sin(jk∆x). (Note
that it vanishes at the endpoints j = 0, N .) Show that the associated solution is

uj(tn) = ξnuj(0)

where ξ = ξ(k) = 1− 2α[1− cos(k∆x)].

(c) The solution identified in part (b) grows exponentially in magnitude if |ξ| > 1. Show
that if α > 1/2, then such growth happens when cos(k∆x) is close enough to −1. (Thus,
the scheme is unstable in the sense that a small change in its initial data can produce a
huge change in the solution after multiple time steps, even at times such that tn = n∆t
is still quite small.)

(5) The Lecture 3 notes show that if Ω is a bounded domain, the linear heat equation ut−∆u = 0
with boundary condition u = 0 at ∂Ω can be interpreted (using the L2 inner product) as
“steepest descent” for F [u] = 1

2

∫
Ω |∇u|2 dx within the class of functions satisfying u = 0 at

∂Ω. Let’s give similar interpretations to some nonlinear PDE’s. In both parts (a) and (b),
the domain Ω is bounded and the boundary condition is u = 0 at ∂Ω.

(a) Show that ut = ∆u + u5 is “steepest descent” (with respect to the L2 inner product,
and within the class of functions that vanish at ∂Ω) for G[u] =

∫
Ω

1
2 |∇u|

2 − 1
6u

6 dx.

(b) Show that ut = div
(
|∇u|2∇u

)
is “steepest descent” (with respect to the L2 inner prod-

uct, and within the class of functions that vanish at ∂Ω) for H[u] =
∫

Ω
1
4 |∇u|

4.

(6) Show that if a pde has a time-periodic solution then it cannot have a steepest-descent inter-
pretation.

(7) In Lecture 3 we showed that the “gradient” of F [u] = 1
2

∫
Ω |∇u|2 dx in the class of functions

satisfying u = 0 at ∂Ω (and using the L2 inner product) is −∆u. Now let’s consider the
same functional, but without imposing any boundary condition on u. Show that in this
case ∇F exists at u only if ∂u/∂n = 0 at ∂Ω. (Thus: the linear heat equation with the
Neumann boundary condition ∂u/∂n = 0 at ∂Ω represents steepest descent for F in the class
of functions with no specified boundary condition.)

(8) The Lecture 3 notes discuss “implicit-in-time” discretization of the linear heat equation. [We
didn’t get to this in class on 9/16; we’ll spend a few minutes on it at the start of class 9/23.]
Focusing on the discrete-time, continuous-space setting with u = 0 at the boundary, this
scheme chooses u(x, tn+1) by solving

u(x, tn+1)− u(x, tn)
∆t

= ∆u(x, tn+1)

with u(x, tn+1) = 0 at ∂Ω. (Please accept that such u(x, tn+1) exists.) Show that
∫

Ω |∇u(x, tn+1)|2 dx ≤∫
Ω |∇u(x, tn)|2 dx. [Remark: this no surprise, since in the continuous-time setting the Dirich-

let integral is monotonically decreasing. But it provides a first indication of the implicit
scheme’s robust stability, since we made no assumption about the size of ∆t.]
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