PDE I — Problem Set 3. Distributed Thurs 9/18/2014, due Tues 9/30/2014.

(1)

Let Q be a bounded domain in R", and consider the semilinear heat equation u; — Au = u®
in Q, with u = 0 at 9Q and u = ug(x) at t = 0. Show that if My = max,cq |ug(x)| and M(t)
solves dM /dt = M® with M(0) = My, then |u(z,t)| < M(t) for all z € Q and all t > 0 such
that both v and M exist. [Hint: use the maximum principle. Remark: One can show that if
u ceases to exist at a finite time Thax, then max,ecq u(z,t) — 0o as t — Tiax. Therefore this
problem gives a lower bound for Tjax.]

Suppose u solves
Up — Uy = 16U

on the interval (0, 7), with the homogeneous Neumann condition u, = 0 at x = 0, 7. Char-
acterize the initial data up = u(z,0) for which u(z,t) stays bounded as t — oc.

The Lecture 2 notes discuss a continuous-time, discrete-space approximation of u; = tugg.
When u has a homogeneous Dirichlet boundary condition, the ODE for the nodal values is
Uj—1 + Ujt1 — 2uj

i = =1,...,.N—1
uj (A(L’)Z .7 9 )

with the convention that the domain is (0, NAz) and uo(t) = un(t) = 0. Let’s discuss its
convergence as Az — 0.

(a) Suppose the exact solution has uP  bounded (uniformly with respect to space and

time). Consider the error z;(t) = u;(t) — uP4(jAx,t). Show that if we define ¢;(t) by

.__|_._2.
4= T = 6il) (1)

then we have an estimate of the form |¢;| < C(Ax)?, with the constant C' depending

de
only on an upper bound for |uPSe. |.

(b) Show that if the RHS of (1) were zero we would have a discrete version of the maximum
principle. In other words: show that if w;(t) (j =1,..., N — 1) solves the ODE system
wj — %ﬁé_mg = 0 with the convention wg(t) = wx(t) = 0, then max;, w;(t) and
min;; w;(t) are achieved either at the initial time (¢ = 0) or the spatial boundary (j = 0
orj=N).

(c) Apply part (b) to z; £ C(Ax)?t to deduce the error estimate |z;(t)] < C(Az)?t.

The Lecture 2 notes also discuss a discrete-time, discrete-space approximation of u; = ;.
When u has a homogeneous Dirichlet boundary condition and the domain is (0, 7), the scheme
says

w(t) = auer (ba) + auj1 (ta) + (1 — 2a)u; (t) (2)
with the conventions that the spatial step is Az = 7 /N, the times are t,, = nAt,

At

(Az)>’

and wuo(t,) = un(t,) = 0 for all n. I told you that this scheme is stable for « < 1/2 and
unstable for o > 1/2. Let’s understand why.



(a) Assume 0 < o < 1/2. Show that for any M, if initially max; |u;(0)] < M, then the

estimate persists: max; |u;(t,)| < M for each n =1,2,.... (Thus, the scheme is stable
in the sense that a small change in its initial data produces a small change in the
solution.)

(b) Suppose a > 1/2. Consider, for any integer k, the initial data u;(0) = sin(jkAz). (Note
that it vanishes at the endpoints j = 0, N.) Show that the associated solution is

uj(tn) = £"u;(0)

where £ = (k) =1 — 2a[l — cos(kAx)].

(c) The solution identified in part (b) grows exponentially in magnitude if |{| > 1. Show
that if & > 1/2, then such growth happens when cos(kAx) is close enough to —1. (Thus,
the scheme is unstable in the sense that a small change in its initial data can produce a
huge change in the solution after multiple time steps, even at times such that ¢, = nAt
is still quite small.)

(5) The Lecture 3 notes show that if 2 is a bounded domain, the linear heat equation u; —Au =0
with boundary condition u = 0 at 9 can be interpreted (using the L? inner product) as
“steepest descent” for Flu] = % [, |Vu[?dz within the class of functions satisfying u = 0 at
09). Let’s give similar interpretations to some nonlinear PDE’s. In both parts (a) and (b),

the domain €2 is bounded and the boundary condition is u = 0 at €.

(a) Show that u; = Au + u’ is “steepest descent” (with respect to the L? inner product,
and within the class of functions that vanish at 0Q) for G[u] = [, $|Vu|? — $uS dz.

(b) Show that u; = div (|Vu|?Vu) is “steepest descent” (with respect to the L? inner prod-
uct, and within the class of functions that vanish at 0Q) for Hu] = [, |Vu|®.

(6) Show that if a pde has a time-periodic solution then it cannot have a steepest-descent inter-
pretation.

(7) In Lecture 3 we showed that the “gradient” of Flu] = [, |Vu|? dz in the class of functions
satisfying u = 0 at 0 (and using the L? inner product) is —Au. Now let’s consider the
same functional, but without imposing any boundary condition on u. Show that in this
case VF exists at u only if du/On = 0 at 9Q. (Thus: the linear heat equation with the
Neumann boundary condition du/dn = 0 at OS2 represents steepest descent for F' in the class
of functions with no specified boundary condition.)

(8) The Lecture 3 notes discuss “implicit-in-time” discretization of the linear heat equation. [We
didn’t get to this in class on 9/16; we’ll spend a few minutes on it at the start of class 9/23.]
Focusing on the discrete-time, continuous-space setting with v = 0 at the boundary, this
scheme chooses u(x,t,11) by solving

U(CC, tTH-l) — 'LL(Z‘, tn)
At

= AU(JJ, tn+1)

with u(z,t,41) = 0 at 9Q. (Please accept that such u(z, t,,+1) exists.) Show that [, |Vu(z, t,41)]? dz <
Jo |Vu(z,t,)|> dz. [Remark: this no surprise, since in the continuous-time setting the Dirich-

let integral is monotonically decreasing. But it provides a first indication of the implicit
scheme’s robust stability, since we made no assumption about the size of At.]



